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Abstract 

Simulating CO2 storage under geomechanical risks frequently involves substantial computational costs 
due to the coupling between multiphase flow and geomechanics. Implementing standard workflows, such 
as well location optimization, with such coupled physics models can significantly increase the 
computational overhead and make the models impractical to use. We study the feasibility of using deep-
learning models to significantly reduce the computational overhead associated with simulating and 
quantifying the geomechanical risks of CO2 storage. The proposed approach leverages deep learning-
based surrogate modeling to significantly enhance the efficiency of coupled flow-geomechanics 
simulations for identifying suitable injection well locations for CO2 storage. Using simulated data, we 
train a U-Net convolutional neural network to learn a mapping between well locations s and spatially 
distributed model parameters (permeability) to the simulation outputs of interest. Once trained with a 
fixed set of model input parameters, the U-Net model can map different well location scenarios to the 
corresponding pressure fields, CO2 saturation, and geomechanical outputs, including vertical 
displacement and plastic strain. The U-Net model is subsequently adopted as an efficient tool to replace 
the coupled flow-geomechanics simulation needed for identification of injection well locations to 
minimize geomechanical risks. We report preliminary results showing that the trained U-Net model can 
predict pressure and saturation fields from well locations, with all the other inputs remaining consistent 
with the simulation model used in the training. We investigate the performance of the network under 
different assumptions and for estimating different flow and geomechanical outputs. The results show that 
the U-Net model can drastically reduce the computational cost of well placement workflows by replacing 
coupled physics simulation with a fast proxy model that can be used to predict the geomechanical risk 
associated with different well location and injection strategies. The developed framework can be used to 
improve the computational demand of coupled-physics modeling and facilitate its application to decision-
making workflows and field management. 
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Introduction 

Carbon Capture and Storage (CCS) has gained recognition as a prominent option for mitigating industrial 
CO2 emissions and has earned considerable attention in recent literature. This attention encompasses 
various aspects, including CO2 capture and storage mechanisms (Chow et al., 2003; Rosenbauer and 
Thomas, 2010; Blunt, 2010; Kumar et al., 2005; MacMinn et al., 2010; Nordbotten et al., 2004), 
analytical and numerical solutions (Nordbotten et al., 2005; Dentz and Tartakovsky, 2009; Mathias et al., 
2009b; Pruess and Garcia, 2002; Nghiem et al., 2004; Mukhopadhyay et al., 2015), simulations 
integrating CO2 storage with coupled flow-geomechanics (Dean et al., 2006; Longuemare et al., 2002; 
Vilarrasa et al., 2011; Rutqvist et al., 2010; Goodarzi et al., 2010; Verdon et al., 2011; Jha and Juanes, 
2014; McMillan et al., 2019; Zhao and Jha, 2019), field-scale optimization focusing on maximizing CO2 
storage through solubility trapping and capillary trapping mechanisms under well-controlled or well-
placement optimization (Zheng et. al., 2021; Shamshiri and Jafarpour, 2011; Zhang and Agarwal, 2012; 
Heath et al., 2014; Goodarzi et al., 2015), and risk assessment problems primarily focuses on mitigating 
geomechanical risks such as injection/production-induced ground displacement, induced micro-
seismicity, and CO2 leakage potential through caprock, wellbore, and other pathways (Brandt et al., 2014; 
Birkholzer et al., 2015; Wilson et al., 2003; Celia et al., 2015; Zoback and Gorelick, 2012; Zheng et al., 
2023). 
 
Simulating CO2 storage under geomechanical risks frequently involves substantial computational costs 
attributed to the coupling between flow and geomechanical models. When history matching, optimization, 
and (geological) uncertainties are introduced, the computational burden can increase significantly, thereby 
limiting the industrial-scale applications of these workflows. There are mainly four surrogate modeling 
approaches (Bahrami et. al., 2022; Jaber et. al., 2019; Syed et. al., 2022) for alleviating computational 
costs in the application of reservoir simulation: 1) Statistical approaches rely on statistical methods to 
construct a response surface, effectively simplifying the problem. They aim to alleviate both complexity 
and computational burden, making it possible to predict reservoir performance under geological 
uncertainties more efficiently (Chu, 1990; Elvind et al., 1992; Dejean and Blanc, 1999; Friedmann et al., 
2003; Manceau et al., 2001; Eide et al., 1994; White and Royer, 2003; Kabir et al., 2004; Yeten et al., 
2005; Kalla and White, 2007; Li and Friedmann, 2005; Slotte and Smorgrav, 2008; Schuetter et al., 
2014). Statistical approaches are reliable if the estimated values closely align with the actual values within 
an acceptable margin of error (Jaber et. al., 2019). 2) Reduced-physics methods simplify the physical 
models using different techniques, such as multi-fidelity grid resolution, to expedite computations (Al‐
Mudhafar et al., 2022; Ganesh and Mishra, 2014; Gasda et al., 2012; Saripalli and McGrail, 2002; 
Benson, 2003; Noh et al., 2007; Burton et al., 2008; Oruganti and Mishra, 2013). 3) Reduced order 
modeling (ROM) involves projecting the high-dimensional system matrix onto a lower-dimensional 
space, enabling faster solving of equations while excluding irrelevant parameters (Jin and Durlofsky, 
2018; Harp et al., 2016; Jia et al., 2016; He and Durlofsky, 2014; Chen et al., 2018; Keating et al., 2016; 
Gilmore et al., 2022; Cardoso et al., 2009; Van Doren et al., 2006; Ghasemi et al., 2015; Slotte and 
Smorgrav, 2008). 4) AI-based models are surrogate models that are trained using machine learning and 
pattern recognition techniques to create an input-output mapping. The field of AI-based models can be 
broadly categorized into two major groups: data-driven proxy models that are trained purely based on 
data acquired from physics-based simulation modeling or monitoring/historical field data (Alenezi and 
Mohaghegh, 2016; Agada et al., 2017; Landa and Güyagüler, 2003; Qin et al., 2023), and physics-
informed or physics-based proxy models that, in addition to using data, incorporate some aspects of the 
underlying physics into the model, e.g., by updating the loss function and structure of the machine 
learning model (Shokouhi et al., 2021; Liu et al., 2023; Meguerdijian et al., 2023; Jiang et al., 2023; Yan 
et al., 2022; Latrach et al., 2023).  
 
Numerous studies have delved into the development of surrogate models for CO2 storage, primarily with 
the objective of predicting trapping mechanisms and storage outcomes (Khanal and Shahriar, 2022). 
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State-of-the-art neural network architectures, including convolutional neural networks, U-Net, recurrent 
neural networks, LSTM, Residual neural networks, among others, have been harnessed to forecast the 
spatial and temporal evolution of pressure and CO2 plume behavior in 2-D or 3-D fields characterized by 
heterogeneous flow properties and fixed well locations (Wen et al., 2022; Zhong et al., 2019). 
Understanding the geomechanical responses resulting from CO2 injection is pivotal for ensuring the 
safety and effectiveness of injection operations within the designated storage timeframe. Notably, 
researchers have made strides in developing CO2 storage surrogate models capable of predicting the 
spatial and temporal evolution of elastic geomechanical responses, such as stress and strain fields (Syed et 
al., 2022; Tang et al., 2022). Furthermore, a substantial body of research has been dedicated to the 
development of surrogate models aimed at facilitating the optimization of CO2 storage, whether online or 
offline (Al-Mudhafar and Rao, 2017; Pan et al., 2014; Sayyafzadeh, 2017). 
 
However, predicting the response of the field under varying well locations remains challenging due to the 
significant spatial variability of pressure and other state variables in response to changing well locations 
within heterogeneous flow property fields. Moreover, predicting the inelastic behavior of geomechanical 
responses, such as plastic strain, is an intricate task due to the spatial and temporal non-linearities 
involved (Zheng et al., 2021; Zheng et al., 2023). A critical gap in the existing literature is the 
development of surrogate models capable of predicting the spatial characteristics of state variables, 
including non-linear geomechanical responses such as plastic deformation, while accommodating well 
location changes. In this work, we build an efficient CO2 storage surrogate model designed to facilitate 
the transformation of well location data and permeability field information into key state variables of 
interest. These state variables encompass 3-D pressure, CO2 plume, ground displacement, and plastic 
deformation of the storage field. Our constructed surrogate models offer substantial versatility and can be 
effectively employed in various applications, including data assimilation, field-scale optimization, and 
history matching. Their primary benefit lies in their ability to significantly cut down on computational 
costs while enabling the practical implementation of decision-making workflows that closely align with 
real-world scenarios. 
 

Methodology 

The governing equations for the coupled flow-geomechanics model have been comprehensively 
explained in our prior publication (Zheng et al., 2021). Furthermore, the numerical simulation model used 
in generating the training samples in this paper is extensively documented in the Numerical Experiment 
Results Section, Example 2: Multi-facies Model in that prior work, including model configurations and 
simulation details. To conserve space and ensure a seamless flow of new content in this paper, we omitted 
the details of the governing equations and the numerical simulation model. 
 
U-Net Surrogate Model 
 
In this section, we present the architecture of the U-Net surrogate model that has been developed for the 
purpose of mapping 3-D input data fields encompassing well locations and permeability fields to 3-D 
output data, which includes pressure, vertical displacement, and CO2 plume fields, at the last time step of 
simulation. Additionally, we outline the schematic workflow employed to map from well locations as 
input data to the ultimate generation of a 3-D plastic strain field as the desired output data, involving an 
intermediate step in the process. Figure 1 illustrates the U-Net architecture we have created. The model’s 
input data dimension is configured as 56×56×20 in the x-, y-, and z-directions, and the output data 
dimension mirrors this setup. In the input dataset, we combine the well location data with the 
deterministic permeability field, represented in the fourth dimension. To encode the well location dataset, 
we utilize one-hot encoding, where cells are marked “1” at the perforation locations within a 3-D grid, 
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while the remaining cells are designated as “0”. We apply min-max normalization to standardize the input 
and output dataset.  
 
The network is designed with a U-shaped architecture, comprising a contracting path and an expansive 
path. The contracting path is a standard convolutional network, featuring a series of convolution 
operations followed by a Leaky Rectified Linear Unit (Leaky-ReLU). Notably, a single down-sampling 
operation occurs at the third convolution layer within the contracting path to reduce dimensionality. 
During the contraction phase, spatial information is reduced while feature information is amplified. 
Conversely, the expansive pathway integrates both feature and spatial information by employing 
deconvolutions and concatenating high-resolution features from the contracting path. In this case, a single 
deconvolutional operation is carried out, with Leaky-ReLU serving as the activation function. In our 
design, we opt for a single down-sampling and up-sampling operations on the input data. This choice is 
deliberate, aimed at retaining a significant portion of the spatial information while maintaining a 
manageable number of model parameters. This balance between preserving spatial information and 
managing model parameters ensures a trade-off between model accuracy and training efficiency. To 
enhance network depth while maintaining efficiency, we incorporate four residual blocks into the U-Net 
structure. These residual blocks, with skip connections, contribute to creating a deeper convolutional 
neural network. This approach has been shown to yield improved performance (Chen et al., 2022; Jiang et 
al., 2021). Figure 2 provides an in-depth view of the model structure. The U-Net model we have crafted 
comprises three primary layer types: convolutional layers, residual layers, and deconvolutional layers. 
Figure 2 encapsulates the layer types, their corresponding output shapes, and the parameter count for each 
layer. The complete model comprises approximately 1.5 million parameters. We apply Leaky Rectified 
Linear Unit (Leaky ReLU) as the activation function after each convolutional layers to avoid the dying 
ReLU problem (Nair and Hinton, 2010). The Gaussian Error Linear Units (GELUs) activation function is 
applied in the last layer to prevent negative output values (Hendrycks and Gimpel, 2016). 
 

 
Figure 1. U-Net architecture for mapping from 3-D input data including well locations and permeability fields to 3-D output data including 

pressure, vertical displacement, and CO2 Plume fields. 
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Figure 2. A breakdown of the U-Net model’s layer specifications including output shapes and the parameter counts for each layer. The output 

shape is represented in four dimensions, capturing the number of filter layers and input dimensions along the x-, y-, and z-directions, respectively. 
The kernel size is 3 × 3 and the paddings are not shown in the table. 

 
We train three different surrogate models using the same proposed U-Net architecture, each with one type 
of output data: pressure, vertical displacement, or CO2 plume/saturation. Each model maps from well 
location information combined with permeability field directly to the 3-D state variables of interest. The 
mapping process of the U-Net model can be formulated as 

 𝑌" = 𝐹#$%&'(𝑥,𝑚), 𝑌" ∈ ℝ(×)×* , 𝑥 ∈ ℝ(×)×* , 𝑚 ∈ ℝ(×)×* (1) 

where 𝑌"  represents the model output which has three-dimension: 𝐻, 𝑊, 𝐷 that represent the first, second, 
and third coordinate direction of the output field, respectively. 𝐹#$%&' represents the mapping process of 
the U-Net model. The input, 𝑥, represents the well location field in 3-D with dimensions of	𝐻, 𝑊, 𝐷 that 
represent the first, second, and third coordinate direction, respectively. Input 𝑚 represents the flow 
property or permeability field in 3-D with dimensions of	𝐻, 𝑊, 𝐷 that represent the first, second, and 
third coordinate direction, respectively. The loss function of the training is defined using MSE loss as 

 ℒ1𝑌, 𝑌"2 =
1
𝑛
51𝑌+ − 𝑌"+2

,
$

+-'

 (2) 

where 𝑛 is the total number of sample size, 𝑌"  is the predicted U-Net model output field, and 𝑌 is the 
observed values. The training hyperparameter settings are listed in Table 1. 
 

Training-testing split ratio 0.8 
Learning rate 1E-4 

Step size 500 
Batch size 8 

Epochs 1000 
Optimizer Adam (Kingma and Ba, 2014) 

Table 1. Training hyperparameter settings. 

For predicting the 3-D plastic strain field, a direct mapping from well locations with permeability values 
to the plastic strain field proves to be ineffective due to the highly localized and sparse nature of the 
output. We will elaborate on this challenge in the subsequent results section. To overcome this limitation, 
we have devised a workflow, illustrated in Figure 3, that involves a two-step process. In the first step, we 
employ a U-Net model to learn the mapping from well locations to pressure, while the second step 
involves training another U-Net model to map the derived pressure field to the plastic strain field. It’s 
worth noting that both U-Net models share the same structural architecture, differing only in their 
respective inputs, outputs, and weights of the U-Net models. 
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Figure 3. Schematic workflow to map from well location into plastic strain field through two U-Net models. 

 
General Workflow  
 
In this section, we describe a schematic workflow as depicted in Figure 4 for the construction of U-Net 
models aimed at predicting various simulation results, including pressure, CO2 saturation, vertical 
displacement, and effective plastic strain, from well location information and permeability field data. We 
start with data preparation step where we establish a coupled-physics reservoir simulation model to 
facilitate data generation. Subsequently, we generate a comprehensive training dataset by executing 
reservoir simulations under a variety of well configurations, resulting in 3-D outputs of pressure, CO2 
saturation, vertical displacement, and effective plastic strain. The detailed data generation process is 
elaborated in Appendix A. Following data generation, we perform min-max normalization on each of the 
diverse inputs and outputs to prepare them for training. 
 
In the training step, we first construct and train the fundamental U-Net architecture as illustrated on 
Figure 1 to establish the mapping from well location information with permeability field to the final time 
step simulation results of pressure, CO2 saturation, and vertical displacement. We then perform fine-
tuning of the model structure and adjusting training hyperparameters to optimize the model’s 
performance. Subsequently, we undertake a sensitivity analysis to determine the minimum required 
sample size for effective training. Moving on to the training step 2, in this step, we build and train the 
same U-Net structure with input as the predicted pressure from U-Net 1 and output as the effective plastic 
strain field. The fine tuning and sensitivity analysis on training sample size is also performed for this 
model and summarized in Appendix B. 
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Figure 4. General workflow for building and training U-Net models. 

 
 
Results and Discussion 
 
U-Net with permeability 
In this section, we present the results and show the performance of the proposed U-Net model with 
permeability concatenated with well location information as the input data. A total of 200 unseen testing 
data is used to test the performance of the four U-Net models. The testing MSEs are summarized in Table 
B1. Figure 5 shows the plots of the results for pressure prediction using the U-Net model for 11 selected 
cases. In the first row, the maps display the locations of wells denoted by green and black dots on the 
permeability map for each of the 11 cases at the injection layer (17th layer). In the second row, we present 
the pressure predictions at the injection layer. The first plot within the dashed box identifies the region of 
heterogeneous permeability. The third row illustrates the actual pressure observations at the same layer. 
Lastly, the fourth row depicts the mismatch between the predicted pressure and the true pressure 
observations. In the fourth row, it is evident that the proposed U-Net model demonstrates superior 
predictions, exhibiting minimal spatial mismatch values. A similar trend emerges when applying the 
proposed U-Net model to vertical displacement, as depicted in Figure 6 for vertical displacement 
prediction. It’s worth noting that the mismatch in the case of vertical displacement is notably smaller than 
that observed for pressure, primarily due to the smoother nature of the vertical displacement field. Figure 
7 provides a visual representation of the prediction results for CO2 saturation. The comparison between 
predicted and observed values reveals a good match, although a relatively higher mismatch is noticeable, 
particularly in the boundary cells of the CO2 plume. This discrepancy can be attributed to the inherently 
less smooth (Rahaman et al., 2019; Cao et al., 2019) and sparser nature of the CO2 saturation field. The 
vertical (x-z) views of the CO2 saturation prediction results are shown on Figure 8. In both figures, a 
strong alignment is evident between the predicted and actual CO2 saturation field, highlighting the U-
Net’s capability to capture both horizontal and vertical spatial correlations.  
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Figure 5. U-Net model prediction for pressure (with permeability as one of the input data). The green and black dots are well locations shown on 
the map. The first row plots the wells on permeability map for each of the 11 cases. The second row shows the pressure prediction at the injection 

layer. The heterogeneous permeability region is labelled at the first plot inside the dashed box. The third row shows the true observation of 
pressure at the same layer, and the fourth row shows the difference between predicted pressure and the true observation of pressure. 

 

 
Figure 6. U-Net model prediction for vertical displacement, 𝐷!	(with permeability as one of the input data). The green and black dots are well 

locations shown on the map. The first row plots the wells on permeability map for each of the 11 cases. The second row shows the 𝐷! prediction 
at the injection layer. The heterogeneous permeability region is labelled at the first plot inside the dashed box. The third row shows the true 

observation of 𝐷!	at the same layer, and the fourth row shows the difference between predicted 𝐷!	and the true observation of 𝐷!. 
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Figure 7. U-Net model prediction for CO2 Saturation (with permeability as one of the input data). The green and black dots are well locations 

shown on the map. The first row plots the wells on permeability map for each of the 11 cases. The second row shows the CO2 Saturation 
prediction at the injection layer. The heterogeneous permeability region is labelled at the first plot inside the dashed box. The third row shows the 
true observation of CO2 Saturation	at the same layer, and the fourth row shows the difference between predicted	and the true observation of CO2 

Saturation. 

 

 
Figure 8. U-Net model prediction for CO2 Saturation (vertical view) with permeability as one of the input data for the corresponding 11 examples 

in Figure 7. 

 
We perform multiple scenarios for the training of effective plastic strain with different input structure and 
loss functions. The testing MSE errors are summarized in Table 2. Figure 9 provides a visual 
representation of the prediction results for effective plastic strain across multiple training scenarios in 

Wells on permeability map

x

y

x
z

Permeability at well layer in y-direction 

Prediction (CO2 Saturation)

True Observation (CO2 Saturation)

Differences

Permeability at well layer in y-direction 

Prediction (CO2 Saturation)

True Observation (CO2 Saturation)

Differences



CCUS 4003166  10 
 

Table 2. Both the table and the plots clearly indicate that the testing error is minimized when using 
predicted pressure (case 4) as the training input for the same training hyperparameter settings. We also 
observe that when Mean Squared Error (MSE) is used as the loss function, the sparsity of the output data 
can lead to a very small MSE value during the initial training iterations, causing the training to converge 
too rapidly without sufficiently capturing the input-output relationship. 
 
Additionally, it is worth noting that incorporating the permeability map alongside well location data as 
input results in deteriorated training performance. This phenomenon can be attributed to the fact that the 
output variable, effective plastic strain, exhibits strong localization around the well locations. When 
permeability information is introduced as part of the input, it tends to overshadow the significance of well 
locations. This observation becomes evident when analyzing the feature maps of the convolutional layers, 
as depicted in Figure 10. In Figure 10, we focus on the feature maps within convolutional block no. 3, 
using a model input comprising well location information concatenated with permeability maps. The first 
row displays the 16 feature map layers for well configuration 1, with the well locations depicted in the 
final column. The second row illustrates the difference between feature maps at the same locations 
between well configuration 1 and 0 (not shown here). The third row showcases the feature maps at the 
same locations for well configuration 2, and the fourth row illustrates the difference between feature maps 
at the same locations between well configuration 1 and 2. 
 
From the plots, it becomes evident that the inclusion of permeability data in the input leads to a near 
disappearance of the well location information in the feature maps, which is only discernible when 
subtracting the permeability information. In contrast, the feature maps that have undergone permeability 
subtraction, as shown in the second and fourth rows, successfully preserve the original well locations and 
exhibit noticeable distinctions among different well configurations. However, when permeability 
information remains uncompensated, as depicted in the first and third rows, the localized well information 
becomes indistinguishable, and the feature maps display minimal differences among various well 
configurations. Furthermore, an analysis of the colorbar reveals that the well location information 
represents only 0.2% of the permeability information. This underscores the ease with which well location 
information can be overshadowed when combined with permeability data. Considering the localized and 
sparse nature of the effective plastic strain output variable, it is imperative to emphasize local information 
in the input to enable the model to effectively capture the input-output relationship during training. With 
these observations and conclusion, we conducted another study in which we assign greater importance to 
the well location input. Table 2 case 2 displays the testing mean squared error (MSE), and it clearly 
demonstrates that increasing the weight on well location information leads to improved training 
performance than that of case 1 and case 3. The weight factor must be determined through a sensitivity 
analysis. 
 

Case Input 1 Weight for 
input 1 Input 2 Weight for 

input 2 Testing MSE Error 

1 well location 1 permeability 
map 1 1.51E-05 

2 well location 1E4 permeability 
map 1 1.709E-06 

3 well location 1 - - 9.384E-06 

4 predicted 
pressure 1 - - 8.810E-07 

Table 2. Testing errors across various training scenarios for effective plastic strain with the same hyperparameter settings. 
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Figure 9. Different cases on Table 2 of U-Net model prediction for effective plastic strain (𝜀"# ). The green and black dots are well locations 

shown on the map. The first row shows the well locations on permeability maps. The second row plots the true observation for each of the 11 
cases. The rest of the rows show the prediction and mismatch at the first layer for each case. 

 
Figure 10. Feature maps at convolutional block no.3 with model input of well location information concatenated with permeability maps. The 

first row plots the 16 layers on channel 1 for well configuration 1 with well locations plotted on the last column. The second row shows the 
difference between the feature maps at the same location between well configuration 1 and 0 (which is not shown here). The third row shows the 
feature maps at the same location for well configuration 2 and the fourth row shows the difference between the feature maps at the same location 

between well configuration 1 and 2. 

 
U-Net without permeability 
 
When training the model for prediction of non-sparse and smoother parameters, such as pressure, vertical 
displacement, and CO2 saturation, the absence of permeability results in degraded training performance 

Well locations on 
permeability map

True 
Observation

Case 1 
Prediction

Case 1 
Difference

Case 2 
Difference

Case 3 
Difference

Case 4 
Difference

Case 2 
Prediction

Case 3 
Prediction

Case 4 
Prediction

Feature maps at convolutional block no.3
Well config 1Channel 1 

layer 1
Channel 1 
layer 16

Difference between Well config 1 and well config 0

Well config 2

Difference between Well config 2 and well config 1

Well 
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compared to when permeability is included, under the same model training settings. As demonstrated by 
the discrepancies in vertical displacement and CO2 saturation predictions, some testing cases exhibit 
significant underestimation, indicating a substantial gap between predicted values and true observations. 
This underscores the importance of incorporating the permeability field into the model input, as it enables 
the model to learn more quickly about the input-output relationship with a better representation of global 
spatial information. 
 

 
Figure 11. U-Net model prediction for vertical displacement, 𝐷!	(without permeability for the input data). The green and black dots are well 

locations shown on the map. The first row plots the wells on permeability map for each of the 11 cases. The second row shows the 𝐷! prediction 
at the injection layer. The heterogeneous permeability region is labelled at the first plot inside the dashed box. The third row shows the true 

observation of 𝐷!	at the same layer, and the fourth row shows the difference between predicted 𝐷!	and the true observation of 𝐷!. 

 
Figure 12. U-Net model prediction for CO2 Saturation (without permeability for the input data). The green and black dots are well locations 

shown on the map. The first row plots the wells on permeability map for each of the 11 cases. The second row shows the CO2 Saturation 
prediction at the injection layer. The heterogeneous permeability region is labelled at the first plot inside the dashed box. The third row shows the 
true observation of CO2 Saturation	at the same layer, and the fourth row shows the difference between predicted	and the true observation of CO2 

Saturation. 

Conclusions 

In this paper, we proposed a U-Net model to approximate the output of a coupled flow and geomechanics 
model for different well configurations. The model uses the permeability model concatenated with well 
location information as input to predict the spatiotemporal distribution of pressure, flow, and important 
geomechanical output. We evaluated the performance of the model on 200 instances of unseen test data 
for prediction of multiple parameters, including pressure, vertical displacement, CO2 saturation, and 
effective plastic strain. For pressure, vertical displacement, and CO2 saturation predictions, the inclusion 
of permeability data in the input significantly improved the model training and prediction performance. 
The training results demonstrated that the proposed U-Net model produced predictions that closely 
matched the true responses, especially those that have global nature such as pressure. In predicting CO2 
saturation, while there was generally a good match between predicted and observed values, some 

x

y

x

y
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discrepancies were observed, particularly in boundary cells. This discrepancy could be attributed to the 
inherent non-smooth nature of the CO2 saturation field. Nonetheless, the proposed U-Net model was able 
to capture both horizontal and vertical distribution of the saturation distribution. We also explored 
different training scenarios for predicting the effective plastic strain, considering various input structures 
and loss functions. We observed that only including the permeability map alongside well location data as 
input could lead to deteriorated training performance for effective plastic strain prediction. However, 
including pressure information as input improved the prediction error of the effective plastic strain. In 
summary, our study demonstrated the effectiveness of the proposed U-Net model in predicting various 
subsurface parameters, with the inclusion of permeability data enhancing performance for non-sparse 
parameters. The choice of training inputs and the balance between well location and permeability 
information were found to be crucial in achieving accurate predictions, emphasizing the need for 
thoughtful model configuration and sensitivity analysis in subsurface modeling applications. 
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Appendix A. Training Dataset Generation 

In this section, we describe the process to generate training dataset for the surrogate model. The numerical 
simulation model described in our previous paper (Zheng et al., 2021) Numerical Experiment Results 
Section, Example 2: Multi-facies Model is used for the data generation. A total of 1000 reservoir 
simulations are executed, each featuring distinct well locations under a consistent Bottom Hole Pressure 
(BHP) control setting. Each simulation run is configured with four wells. To encompass a broad spectrum 
of well configurations, we partition the heterogeneous region into four quadrants, as illustrated in Figure 
A1. Each well is then randomly assigned to one of these quadrants. Furthermore, we maintain a minimum 
inter-well distance of 500 meters, which spans over three grid blocks to ensure an appropriate separation 
between the wells. 

 
Figure A1. Four quadrants on the heterogeneous permeability region.  
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Appendix B. Sensitivity Analysis of Surrogate Model 

In this section, we present a sensitivity analysis of the proposed surrogate model concerning the 
determination of training data size. The training is conducted using the U-Net models outlined in Section 
2.1 to predict the final-time step values for pressure, CO2 plume, vertical displacement (𝐷3), and effective 
plastic strain (𝜀45 ). We explore the impact of varying training data sizes, ranging from 100 to 1000 data 
points, while maintaining a consistent 4:1 ratio between training and testing datasets. For testing 
purposes, we employ a fixed set of 200 additional, previously unseen data points for each training 
scenario. Table B1 provides a comprehensive summary of the Mean Squared Error (MSE) for different 
prediction parameters, encompassing pressure, CO2 plume saturation, vertical displacement, and effective 
plastic strain. We also investigate the influence of including or excluding permeability information. 
Concurrently, Figure B1 depicts a graphical representation of the MSE error in relation to the training 
data size for all four parameters. Upon examining the results presented in Table B1 and Figure B1, it 
becomes evident that there is a consistent trend of decreasing MSE error as the training data size increases 
for all four parameters. Specifically, a convergence in the MSE error is observed for pressure and vertical 
displacement when the training size reaches 500, suggesting that little additional improvement in training 
performance is achieved beyond this point. Therefore, a training size of 500 data points is deemed 
sufficient to yield highly accurate testing results for predicting pressure and vertical displacement. 
Similarly, the convergence for CO2 saturation and effective plastic strain is observed at a training size of 
700, indicating that there is minimal room for improvement in training performance beyond this 
threshold. Consequently, we establish a minimum data size requirement of 700 data points for training 
models aimed at predicting CO2 saturation and effective plastic strain. Additionally, the availability of 
permeability information played a crucial role in enhancing prediction accuracy. When permeability 
information was not included, the predictive performance for pressure, vertical displacement, and CO2 
saturation experienced a decline. 
 

Prediction 
Parameter Data Size 

Testing 
Error 
(MSE) 

Permeability 
Information 

(y/n) 
Prediction 
Parameter Data Size 

Testing 
Error 
(MSE) 

Permeability 
Information 

(y/n) 

Pressure 100 7.822E-04 y Vertical 
Displacement 100 1.720E-03 y 

 200 3.843E-04 y  200 1.007E-03 y 
 300 3.337E-04 y  300 1.666E-04 y 
 400 1.986E-04 y  400 1.100E-04 y 
 500 4.454E-05 y  500 6.071E-05 y 
 600 4.366E-05 y  600 2.574E-05 y 
 700 1.542E-05 y  700 1.101E-05 y 
 800 2.056E-05 y  800 8.517E-06 y 
 900 2.026E-05 y  900 2.852E-06 y 
 1000 1.934E-05 y  1000 6.522E-06 y 
 1000 4.861E-04 n  1000 3.724E-05 n 

CO2 
Saturation 100 2.617E-03 y Effective 

Plastic Strain 100 1.416E-05 y 
 200 1.961E-03 y  200 9.537E-06 y 
 300 1.242E-03 y  300 6.155E-06 y 
 400 1.039E-03 y  400 3.985E-06 y 
 500 8.470E-04 y  500 2.316E-06 y 
 600 6.370E-04 y  600 2.344E-06 y 
 700 5.123E-04 y  700 9.507E-07 y 
 800 4.312E-04 y  800 9.134E-07 y 
 900 3.709E-04 y  900 2.025E-06 y 
 1000 3.618E-04 y  1000 8.810E-07 y 
 1000 1.218E-03 n     

Table B1. A summary of the Mean Squared Error (MSE) for four U-Net models including mapping to pressure, CO2 plume/saturation, vertical 
displacement (𝐷!), and effective plastic strain (𝜀"# ), considering different training data sizes and the presence (y) or absence (n) of permeability 

information. 
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Figure B1. Model sensitivity analysis on training sample size. The y-left axis is the MSE error plotted for CO2 saturation, vertical displacement 

(𝐷!), and pressure while the y-right axis is the MSE error plotted for effective plastic strain. 
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