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Abstract 

Residual oil zones (ROZ) arise due to a wide range of geologic conditions and are located under the oil-
water contact of main pay zones. These ROZs have historically been deemed economically unviable for 
development using conventional primary recovery methods due to the presence of immobile oil. Yet, they 
represent substantial subsurface volume suitable for CO2 sequestration and storage. However, there is a 
deficiency of effective techniques for assessing the performance of CO2-EOR in coupled with CCUS in 
ROZs. This study introduces the use of Machine Learning techniques to assess/predict the potential of oil 
recovery and CO2 storage capacity in ROZs. Our framework was built upon the concept of supplying the 
machine learning model with data obtained from several simulation runs involving CO2 injection in ROZs. 
This dataset includes key geological and operational attributes as inputs (Thickness, Permeability/Kh, 
Porosity, Sorw, Sorg, Producer BHP, Injection rate, formation water salinity). The objective is to forecast 
CO2 storage capacity and oil recovery potential, eliminating the necessity for time-consuming and costly 
reservoir simulations. We have tested this method in both synthetic and field-scale cases. The study results 
demonstrated a significant positive correlation between the cum-oil production with sorw, CO2 injection 
rate, reservoir permeability. In contrast, producer BHP and the vertical permeability to horizontal 
permeability ratio showed negative correlation. Conversely, the cumulative CO2 storage in ROZs exhibited 
a positive relation with producer BHP, reservoir thickness, and CO2 injection rate, while showing a 
negative correlation with reservoir permeability. The utilization of our proposed ANN models has proven 
highly effective accuracy in predicting CO2-EOR and storage performance. Notably, the tested R2 values 
for Cumulative oil production and CO2 Storage models were in range of 0.9 to 0.98 with low average 
absolute percentage error less than 10%. Furthermore, these models serve as a valuable tool for improved 
reservoir management by optimizing operational parameters, such as producer BHP and CO2 injection 
rates. These findings have been rigorously validated through real field data, affirming a high level of 
agreement between the model's predictions and actual outcomes. The developed model can be applied as a 
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fast technical and cost-effective tool for evaluating CO2-EOR and storage in ROZs. Using real ROZs field 
data demonstrated an excellent agreement between the ANN’s forecasts and the actual data, making it well-
suited for field applications. 

Introduction  

Geological CO2 Storage is considered as an important technique to reduce the CO2 gas emissions into the 
atmosphere that causes climate change challenges. CO2 can be stored in different geological reservoirs 
such as depleted oil or shale gas reservoirs, deep saline aquifers, coal beds and geothermal reservoirs (Li et 
al,2006). One of main attractive reservoirs are the depleted oil and gas reservoirs as the CO2 can serve as 
EOR solvent and as well as for CO2 storage purpose (Bachu,2016). CO2 enhanced oil recovery (CO2-
EOR) has been widely used as EOR method for medium and light oil production in conventional and 
unconventional oil reservoirs for more than decades as when CO2 is injected into the reservoir, the oil 
swells, oil viscosity reduces, interfacial tension reduces, oil vaporizes, capillary number increases, and both 
the sweep and displacement efficiencies increase.(Manrique et al,2010),( Johns and Dindoruk, 2013). In 
addition, the injected CO2 is retained and trapped in reservoir due either structural trapping, residual 
trapping, solubility, and mineral trapping (Cao et al,2020). Most of previous studies on CO2-EOR and 
storage focused on the main pay zone (Ettehadtavakkol et al,2014), (Ampomah et al,2017), (Liu et al,2022). 
Recently, CO2-EOR and storage in Residual Oil Zones (ROZs) has drawn significant attention due to the 
successful commercial CO2-EOR projects in ROZs. Residual oil Zone can be defined as interval of the 
reservoir rock that contain immobile oil with respect to the formation water at the level of residual oil 
saturation typically 40% and less (Sanguinito et al,2020). An ROZ can be categorized as brownfield if it 
occurs below the producing oil-water contact (OWC) of an associated primary pay zone (MPZ), or 
greenfield if it occurs without an MPZ. Because the oil saturation in ROZs may be at or near residual levels, 
ROZs have traditionally been considered commercially undesirable when compared to MPZs. However, as 
many large oil reservoirs reach depletion and carbon dioxide enhanced oil recovery (CO2-EOR) is 
implemented, ROZs may become attractive targets for increased oil recovery.CO2-EOR is increasingly 
used for oil production in areas with documented ROZs, primarily in the Permian Basin (Ren et al,2022) 
(Kuuskraa et al,2020).Chen and Pawar(2019), characterized the effect of CO2 storage and EOR in ROZ 
using Monto Carlo simulations and sensitivity analysis on geological and operational parameters(Chen and 
Pawar,2019). Ren and Duncan (2019) used reservoir simulation to investigate the hydrodynamic effects of 
water flow in aquifer at the base of oil zones and emphasis in the importance of these factors in assessing 
the EOR and storage capacity in ROZs. David and Ahmed (2022) introduced the use of dimensional 
analysis and pulser process for quantifying and discerning the production of the MPZ and ROZ due to CO2 
flooding without the need of numerical simulations. Recently, machine learning techniques have grown in 
popularity for developing computationally quick proxy models, surrogate models, and predictive empirical 
models in subsurface modeling. Several machine learning algorithms have been widely used in prediction 
of reservoir production and performance assessment (Song et al,2020), (He et al,2016). Therefore, as ROZs 
have emerged as potential reservoirs for CCUS and there is lack of efficient tools for evaluating CO2 EOR 
performance coupled with CCUS in ROZs. In this paper we will use a 3D reservoir model to simulate the 
CO2 injection process. The reservoir properties referenced to one of potential ROZ in Permian basin 
(Goldsmith-Landreth San Andres Unit). The main objectives of this work are the following: 

• Evaluate the CO2 injection as EOR and CCUS in ROZs in terms of Cumulative oil Production, 
Cumulative CO2 injection, Retained CO2 injection in each phase. 

• Evaluate the Sensitivity of the uncertainty of the Reservoir Rock Properties (Net Pay Thickness, 
Permeability, Vertical to Horizontal Permeability Ratio, Porosity, Residual Oil Saturation to water 
flood, Residual Oil saturation flood, Formation water Salinity) and the Operational parameters 
including (Producer BHP and Gas injection Rate). 
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• Develop Proxy predictive model to predict the performance of CO2-EOR-CCUS using machine 
learning techniques to provide rapid screening and evaluation of the injection performance. 

Theory and approach 

Residual Oil Zones  

A Residual Oil Zone (ROZ) refers to a section of reservoir rock holding immobile oil, with oil saturation 
levels typically below 40%. ROZs are formed by the movement of water within the reservoir due to natural 
or production-induced flow, water flooding with injection below the oil-water contact, or water imbibition 
into an oil-saturated formation caused by buoyant or hydrostatic forces. The upper limit of the ROZ is 
defined by the conventional oil-water contact, extending down-section from the highest oil saturation to 
near-zero levels. The upper part may include a transition zone (TZ) if there's an overlying conventional 
reservoir, but a ROZ can also exist independently. ROZs can be categorized into two primary groups: 
brownfields and Greenfields, as illustrated in Figure 1. Brownfield ROZs are located beneath a conventional 
reservoir's main pay zone (MPZ) or the subsurface interval where oil is traditionally extracted using 
conventional primary and/or enhanced recovery methods. On the other hand, greenfield ROZs are found in 
regions lacking an overlying conventional oil formation and are frequently identified as hydrodynamic 
fairways (Melzer, 2006). 

 
Figure 1. Residual Oil Zone types (Greenfield and Brownfield) (Sanguinito et al,2020) 

Governing equations 

The mass conservation equation, considering molecular diffusion, for each component i present in the oil, 
gas, and water phases can be expressed as follows: 
!
!"
!∅∑ 𝜌# 	𝑆#𝑚$#) + ∇. (∑ 𝜌#𝑚$#𝑣# −

%&
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#'( ∅𝜌#𝑆#𝐷$#∇𝑚$#0 − 𝑞𝑖 = 0	, 𝑖 = 1:𝑁𝑐                                       (1) 

Where, t is the time, ∅ is the porosity, 𝜌 is the density, S is phase saturation, mi weight fraction for each 
component i, v is Dracy Velocity, Di is the coefficient of the molecular diffusion of component i in phase 
l and qi is the production mass rate or injection mass rate. 

The Darcy’s velocity is expressed in terms of Darcy’s law: 

𝑣# = − )*+#
,#

(∇𝑃𝑙 − 𝜌#𝑔)                                                                                                                             (2) 
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Where, K is the absolute permeability of the rock, krl is the relative permeability of phase l, Pl is the 
pressure of the phase l, 𝜇𝑙 is the phase viscosity, 𝜌𝑙 is the phase density. 

The mass rate of production or injection can be expressed as  

𝑞𝑖 = ∑ 𝜌#𝑚$#𝑃𝐼#(𝑃-.### − 𝑃/#01*# )%&
#'(                                                                                                            (3) 

Where Pwell is the wellbore pressure, P block is the grid pressure, PI is the productivity index. 

The two-phase water-oil and liquid gas relative permeability are fitted using relative permeability tables. 
While the three-phase relative permeability is generated using one of the three relative permeability 
model as Stone’s model II (Stone,1970) 

𝑘+0 = !𝑘+02 + 𝑘+20 + (𝑘+0- + 𝑘+-) − !𝑘+- + 𝑘+20                                                                                (4) 

The mass exchange between the oil and gas phases for each component is modeled using thermodynamic 
phase equilibrium conditions which is defined by equality of the fugacity of all components  

𝑓2$ = 𝑓0$                                                                                                                                                        (5) 

CO2 Trapping Mechanism 

This paper focuses on three main mechanisms of CO2 storage explicitly, solubility and residual trapping.  

Solubility Trapping 

Depending on the temperature of the reservoir, Minimum Miscibility Pressure (MMP), and the properties 
CO2 can either stay soluble or become miscible with the oil. The supercritical characteristics of CO2 play 
a crucial role in penetrating the oil surface, leading to swelling and a reduction in viscosity. In a study by 
Mosavat and Torabi (2014), they demonstrated how the solubility of CO2 varies with changes in 
temperature and pressure. Their findings indicated that solubility tends to increase with higher reservoir 
pressure and API gravity, while it decreases with a reduction in reservoir temperature (Mosavat and 
Torabi,2014). Also, the water can partition in the water phase, to model the CO2 solubility, in aqueous 
phase Henry’s law is used.  

𝑓$
34 = 𝑦$34 ∗ 𝐻𝑖                                                                                                                                              (6) 

Where,	𝑓$
34  is the fugacity of component i in aqueous phase, yiaq is the mole fraction of component i in 

aqueous phase and Hi is the Henry’s constant of component i.                                                                                                                                                      

Henry’s law constants are functions of temperature, pressure, and water salinity. They can be estimated 
using the molar volume at specific pressure and temperature, along with the known Henry’s constant at a 
specific reference pressure and temperature, considering fixed salinity and temperature. However, this 
approach may not be applicable in thick reservoirs. Therefore, the use of Henry constant correlation 
provides more flexibility to handle such situations, such as the Harvey 1996 correlation, as shown in 
equations 7 and 8(Harvey,1996). 

ln𝐻𝑖5 = ln𝑃6785 + 𝐴(𝑇+678)9( + 𝐵(1 − 𝑇+678):.<<=(𝑇+678)9( + 𝐶[exp(1 − 𝑇+678)](𝑇+678)9:.>(    (7)  

Where,	𝐻𝑖5	is Henry’s constant at saturation pressure 𝑃6785 ,Tr is the reduced temperature. A, B,C are 
constants and for CO2 are -9.4234,4.0087 and 10.3199 respectively. 

The Henry’s law Constant at given P ad T is expressed as  

ln𝐻𝑖 = 𝑙𝑛𝐻𝑖5 + (
?@ ∫ 𝑣$9	𝑑𝑃

A
A!"#
$                                                                                                                  (8) 

The Solubility Trapping efficiency can be calculated using the following formula in equation 9, 

𝑆𝑜𝑙𝑢𝑏𝑖𝑙𝑖𝑡𝑦	𝑇𝑟𝑎𝑝𝑝𝑖𝑛𝑔	𝑖𝑛𝑑𝑒𝑥 = @0"3#	C$550#D.C	E355	0F	$GH.1".C	I87	$G	/+$G.
@0"3#	$GH.1".C	I87	E355

                                                (9) 
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Residual Trapping 

Residual trapping is an important CO2 trapping mechanism. Hysteresis phenomena allow capillary 
pressures and relative permeabilities to vary between imbibition and drainage curves through scanning 
curves. Capillary pressure follows drainage curves for decreasing wetting-phase saturations and imbibition 
curves for increasing wetting-phase saturations. In the case of a reversal of saturation directions, capillary 
pressure follows along the scanning curves. Entrapment of the nonwetting phase occurs when it is bypassed 
by the wetting phase, thereby making it immobile. Several research has presented several correlations for 
the modeling of hysteresis. In this paper, the hysteresis in relative permeability is modeled based on land 
correlation(land,1968) equation 10-11. 

𝑆2+J =
K%&9K%'(

(LI(K%&9K%'()
                                                                                                                                     (10) 

𝐶 = (
K%)*+,9K%()'-

− (
K%*+,9K%()'-

                                                                                                                 (11) 

Where Sgrh is Residual gas saturation of imbibition process, Sgh is Historical-maximum-attained gas 
saturation. Sgic Critical reversal saturation for trapping and Sgcrit is the critical gas saturation. 

 
Figure 2. Imbibition and drainage curves used in hysteresis modelling effect (Ampomah et al,2016) 

 

The Residual Trapping efficiency can be calculated using the following formula in equation 12, 

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙	𝑇𝑟𝑎𝑝𝑝𝑖𝑛𝑔	𝑖𝑛𝑑𝑒𝑥 = @0"3#	@+3&&.C	E355	0F	$GH.1".C	I87
@0"3#	$GH.1".C	I87	E355

                                                             (12) 

Reservoir Simulation Model setup 
A three-dimensional reservoir model was constructed using CMG GEM to explore two main objectives: 
(1) assessing the performance of CO2 flooding for enhanced oil recovery (EOR), and (2) determining the 
amount of CO2 sequestered in the reservoir through Residual and solubility trapping. The reservoir model 
consists of 36 grids in the x-direction, 36 grids in the y-direction, and 10 grids in the z-direction, with 
horizontal grid sizes of 120 ft and 122 ft in the i and j directions. A five-spot pattern, depicted in Figure 3, 
is employed for evaluating CO2 injection for both EOR and carbon capture, utilization, and storage 
(CCUS). The initial oil saturation is assumed to be at a residual saturation of 0.4. Relative permeability 
curves, as shown in Figure 4, are referenced from the Goldsmith-Landreth San Andres Unit. Injectors and 
producers are assumed to be completed over the entire reservoir interval. CO2 injection occurs for a period 
of 10 years, concurrent with simultaneous production from producers over the same duration. The 
simulation is conducted for 100 years, encompassing a 90-year post-injection period. A maximum 
bottomhole pressure (BHP) constraint, set at the rock fracturing pressure of 4000 psi, is imposed on 
injectors. Reservoir rock properties, including porosity, permeability, thickness, Sor (residual oil 
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saturation), Sorg (initial oil saturation), formation water salinity, producer BHP, and CO2 injection rate, 
are considered as variables for sensitivity analysis, as outlined in Table 1. 

 
Figure 3. 3D reservoir Simulation Model with Five Spot Pattern  

 

  
Figure 4. Relative Permeability Curves (Oil-water (right), Gas-liquid(left)) 

 
Table 1. Summary of sensitivity variable for generation of the reservoir simulation dataset 

 
Parameter  Lower Bound Upper Bound 

Porosity 0.05 0.3 
Permeability,md 0.01 250 

Kv/Kh 0.01 1 
Salinity,ppm 50,000 250,000 

Residual Oil saturation to water 0.2 0.4 
Residual Oil saturation to gas 0.1 0.25 

CO2 injection Rate,MMSCF/D 5 20 
Producer BHP, Psia 250 1500 

Net Pay Thickness, ft 50 350 
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Reservoir fluid composition is referenced to the ROZ composition in Residual Oil Zone, Seminole Field, 
Permian Basin in (Honarpour et al, 2010) study as shown in table 2. 
 

Table 2. Reservoir Fluid composition  
 

Component  Composition (Mole %) 
N2 0.04 
CO2 0.02 
H2S 0 
C1 20.10 
C2 9.07 
C3 6.95 
iC4 0.04 
nC4 3.90 
iC5 0.04 
nC5 2.49 
C6 2.69 
C7+ 54.66 
MWC7+ 261 

 
 Minimum miscible pressure (MMP) Determination and Reservoir Fluid Characterization 
The minimum miscible pressure (MMP) was calculated using UH_MMP Calculator (Sinha et al,2021) 
yielded MMP about 1500 psia which is lower than reservoir pressure of 2000 psia. The components of 
reservoir oil were lumped into 10 pseudo-components, and the parameters of the Peng-Robinson equation 
of state were fitted based on the experiment data from the constant composition expansion (CCE) test, the 
differential liberation (DL) test. 
Workflow for generating the Dataset for Machine learning Model  
After building the physics-based compositional reservoir simulation model, a large dataset needs to be 
generated to train the predictive model using machine learning. In this study, a numerical model was 
employed to generate an appropriate dataset covering all uncertainties in geological and reservoir 
properties. Nine parameters were investigated in this study. The sampling method for sensitivity analysis 
was established using the Latin Hypercube sampling method. This method involves dividing the cumulative 
density function (CDF) into equal segments and then choosing a random data point in each segment. By 
employing this sampling method, the optimum number of reservoir simulation runs is determined. After 
generating all possible cases, the reservoir simulation is run to produce results in terms of cumulative oil 
production, cumulative CO2 trapped in each phase due to residual trapping and solubility trapping. The 
outcomes of the reservoir simulation model are evaluated to ensure the quality of the results before passing 
them to the machine learning model. The machine learning model divides the dataset into training and 
testing/validation portions. The performance of the machine learning model is then evaluated using the root 
mean square error (RMSE) and the coefficient of determination (𝑅7). 
 

𝑅𝑀𝑆𝐸 = _(
G
∑ (𝑎𝑐𝑡𝑢𝑎𝑙	𝑦$ − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑	𝑦$)7G
$'(                                                                                      (13) 

 
𝑅7 = 1 − ∑ (P1"Q3#	R$9&+.C$1".C	R$)".

'/0
∑ (P1"Q3#	R$9R	E.3G)".
'/0

                                                                                                       (14) 
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Figure 5. Workflow for Dataset generation 

Results and Discussion 
 
Base Case Reservoir Simulation Results  
The Base Case Reservoir simulation model was run with geological and operational parameters summarized 
in table 3. CO2 is injected for 10 years with cumulative oil production about 32 MMSTB were recovered 
as shown in Figure 6. The Storage profile for residual, solubility trapping, and structural trapping is shown 
in Figure 7. The most of CO2 volume stored due to structural trapping and residual trapping due to 
hysteresis effect mentioned earlier. However, lower amount of CO2 dissolved in water due to high salinity 
of 200,000 ppm. Additionally, it is noticeable that the total CO2 in the supercritical phase decreases when 
CO2 breakthrough occurs in the producer well. This is evident in the cumulative CO2 production profile at 
the producer well. 
 

Table 3. Base Case Reservoir Simulation Model Parameter   
Parameter  Value 
Thickness, ft 200 
Permeability, md 200 
Porosity 0.25 
Producer BHP, Psia 500 
KV/KH 0.1 
Salinity, ppm 200,000 
Residual Oil saturation to water 0.4 
Residual Oil saturation to gas 0.2 
CO2 injection Rate, MMSCF/D 20 
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Figure 6. Cumulative Oil Production vs time for the base case 

 

 
Figure 7. Cumulative CO2 Stored vs time for the base case 

 
 
 
 



CCUS 4011705  10 
 

Machine Learning Model  
 
Dataset Description  
 
Reservoir Simulation Realization used as input for the Machine Learning Model in our study Artificial 
Neural Network (ANN). The Reservoir rock and fluid, and operational parameter range summarized in 
table 1 was used to generate several cases. The input for the ANN model were Net pay thickness, Horizontal 
Permeability, Ratio of Vertical to Horizontal Permeability, Porosity, Residual oil Saturation to water flood, 
Residual gas Saturation to gas flood, formation water salinity, Producer Bottom Hole Pressure, CO2 
injection rate. These input parameters were used to generate different ANN models to predict the 
Cumulative Oil Produced, CO2 Dissolved in water, CO2 trapped due to residual hysteresis and CO2 trapped 
structurally. 

Summary of Correlation coefficient of the dataset per input parameter  
 
To assess the impact of each input on the output values, a correlation coefficient analysis was conducted, 
and the results are summarized in Figure 8. The analysis revealed that an increase in the vertical 
permeability/horizontal permeability ratio led to an increase in cumulative oil production while decreasing 
the amount of CO2 stored in the reservoir. This effect can be attributed to the enhanced sweep efficiency, 
facilitating the injected CO2 to reach and mobilize more oil, thereby increasing cumulative oil production. 
Conversely, an increase in kv/kh resulted in a rise in CO2 levels due to gravity, leading to a faster migration 
of CO2 toward the top of the reservoir. This, in turn, reduced the amount of CO2 trapped and stored in the 
reservoir. 
 
Residual saturation for both water and gas flooding exhibited a small correlation with both cumulative oil 
production and CO2 storage. Increased horizontal permeability showed a positive correlation with 
cumulative oil production, while decreasing structural trapping. Porosity increases demonstrated a positive 
correlation with both cumulative oil production and CO2 storage. The producer bottom hole pressure 
showed a negative correlation with cumulative oil production and a positive correlation with CO2 storage. 
 
Furthermore, the CO2 injection rate exhibited a positive correlation with both CO2 injection and cumulative 
oil production. Salinity displayed a negative correlation with CO2 dissolved in water, as expected. As 
salinity increases, it decreases the storage capacity of CO2 solubility in water 
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Figure 8. Correlation Coefficient Analysis between input parameters vs the Cumulative oil production and CO2 Storage 
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ANN Models Configuration  
In this study, an Artificial Neural Network (ANN) model was constructed to predict the Cumulative Oil 
Production in a reservoir based on a set of selected input parameters. The model architecture consists of 
multiple dense layers with rectified linear unit (ReLU) activation functions, allowing the network to capture 
complex relationships within the data. The input features were initially standardized using Min-Max scaling 
to ensure consistent input ranges for improved model convergence. To further enhance the model's ability 
to capture essential patterns within the data, Principal Component Analysis (PCA) was applied to reduce 
the dimensionality of the input space. The resulting principal components were then utilized as input 
features for the ANN.  
This dimensionality reduction not only streamlined the computational complexity but also facilitated the 
identification of key features influencing the output of Cumulative Oil Production and CO2 Storage. The 
model was trained using the Mean Squared Error (MSE) loss function and the Adam optimizer with a 
learning rate of 0.1. The training process was monitored by early stopping criteria, preventing overfitting, 
and ensuring the model's generalization performance. The training history showed the convergence of the 
training and validation losses over the epochs. The early stopping mechanism prevented the model from 
continuing training once the validation loss reached a plateau, ensuring optimal model performance. The 
summary of the model’s configuration is shown in Table 4. 

 
Table 4. Summary of Developed ANN Models    

Model  Number of Hidden Layers Number of Neurons  
Cumulative Oil Production 5 128 
CO2 Dissolved in Water  5 64 
CO2 Trapped (Structural)  3 15 
CO2 Residual Trapping  3 10 

 
Developed Models Performance Evaluation 
The performance of the developed ANN models was assessed using coefficient of determination (R2) and 
Mean absolute Percentage Relative error (MAPRE) as well as the Mean squared error during the training 
and testing process. The Cumulative Oil Production model achieved an outstanding R2 value of 0.98, 
demonstrating its ability to accurately predict oil production trends. Similarly, the CO2 Dissolved in Water 
model achieved an R2 of 0.93, indicating its effectiveness in capturing dissolved CO2 dynamics. The CO2 
Trapped (Structural) and CO2 Residual Trapping models demonstrated high predictive power with R2 
values of 0.9 and 0.96, respectively. All the Models showed MAPRE less than 10%. Cross plots of the 
testing capability of the developed Models are shown in Figure 9.  
 

 
a 

 
b 
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c  

d 
Figure 9. Cross Plots of the Performance of Developed ANN Models (a: Cumulative oil Production, b: CO2 dissolved in Water, c: CO2 trapped 
Structurally, d: CO2 residual Trapping) 
 
Summary and Conclusions  
In summary, this study focused on constructing a three-dimensional reservoir model using CMG GEM to 
assess the performance of CO2 flooding for enhanced oil recovery (EOR) and determine the amount of 
CO2 sequestered through residual, solubility, and Structural trapping in ROZs. A comprehensive sensitivity 
analysis was conducted using a physics-based compositional reservoir simulation model, considering 
various reservoir rock properties and operational parameters. The dataset generated from the reservoir 
simulation was used to train an Artificial Neural Network (ANN) model, aiming to predict cumulative oil 
production, CO2 dissolved in water, and CO2 trapped structurally and due to residual hysteresis. 
The sensitivity analysis revealed key correlations between input parameters and output variables. For 
instance, an increase in the vertical permeability/horizontal permeability ratio enhanced cumulative oil 
production but decreased CO2 storage. Horizontal permeability, porosity, and CO2 injection rate displayed 
positive correlations with both cumulative oil production and CO2 storage, while producer bottom hole 
pressure exhibited a negative correlation with oil production but a positive correlation with CO2 storage. 
The developed ANN models demonstrated high predictive accuracy, with R2 values ranging from 0.9 to 
0.98, indicating their effectiveness in capturing complex relationships within the data. Additionally, the 
Mean Absolute Percentage Relative Error (MAPRE) for all models was less than 10%, confirming their 
reliability. Cross plots illustrated the models' ability to predict testing data accurately. In conclusion, the 
integrated approach of combining reservoir simulation and machine learning, particularly the ANN model, 
proved successful in predicting reservoir behavior under CO2 flooding scenarios. The established 
correlations between input parameters and output variables provide valuable insights for optimizing EOR 
and carbon capture, utilization, and storage (CCUS) strategies. This study contributes to advancing the 
understanding of CO2 flooding dynamics and offers a robust methodology for reservoir management and 
decision-making in the context of CO2 EOR and CCUS. 
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