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Abstract 

This work aims to develop a surrogate model (machine learning-based) to expedite the assessment of 
geologic CO2 storage (GCS) sites by predicting the CO2 containment efficiency of saline aquifers. De-
risking as much as possible geologic CO2 storage resources is an absolute priority to help with the global 
goal of reaching net-zero by mid-century. Geologic CO2 storage numerical modelling (GCSNM) is a 
comprehensive technique to understand the long-term containment of CO2, but it’s a time-consuming multi-
parametrial process, with relative high cost, especially when groups of geologic sites must be evaluated. 

 To overcome before mentioned drawbacks, machine learning-based reservoir modelling arises as a cheap, 
quick, and computationally efficient tool for assessing multiples storage sites. In this paper, a case study is 
presented. A neural network-based geologic CO2 storage (NN-GCS) model was built and fed with a seven-
parameter subset as input (CO2 residual saturation, horizontal permeability, vertical to horizontal 
permeability ratio, porosity, brine salinity, flow rate, and elapsed time) and 4-parameter subset as output 
(Residual, Solubility, and Structural Trapping Index along with CO2 injected volume). Such dataset was 
built from hundreds of experimental design-based numerical realizations derived from a synthetic aquifer 
numerical model of the dome-like shape Bunter Sandstone Closure 36 aquifer in Southern North Sea (SNS), 
UK Continental Shelf (UKCS). The NN-GCS model architecture was designed in Python and used root 
mean square error (RMSE) and coefficient of determination (R2) as best-fit indicators of the NN-GCS 
performance. In addition, it was optimized regarding numbers of nodes (40) and layers (3), showing 
accuracies, for instance R2 for training and testing with 96% and 95% precision respectively. Finally, a field 
application of the NN-GCS model was performed based on basic geologic information from a group of 
Bunter Closures of interest in SNS basin to assure the feasibility to extend its application to another dome-
shape deep saline aquifers in UKCS.  

Results showed, at the end of 100-years injection case, a Structural, Residual, and Solubility Trapping Index 
averaging 83%, 11%, and 6% respectively. The variation coefficient averaging 5% indicate properly 
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predicted trapping indices because all the aquifers have similar structures (dome-like shape) and relatively 
same properties. In addition, CO2 injected volume predictions were ranging from 397 to 456 million 
tons/reservoir, totaling 2.1 giga ton (Gt) of potential storage capacity which represents 70% of total 
theoretical volumetric capacity. These results show the great impact of accelerating geologic CO2 storage 
sites (closure saline aquifers) assessment by implementing a ML-based modelling to de-risk and classify 
groups of saline aquifers as ready-to-be-considered potentially feasible CO2 storage sites. 

Introduction 

CO2 capture and storage (CCS) surges as an order-of-the-day solution in capturing million tons of CO2 –
generated from power generation, industrial processes, and other sources– and containing such volume in 
underground geologic formations. In that sense, This CO2 emission reduction technology is aligned with 
2050 net-zero emission goal. 
Regarding CO2 storage resources in UK Continental Shelf (UKCS), its potential is vast mainly in deep 
saline aquifers, which has been assessed approximately at 68,000 million tons (Mt) or 68 giga tons (Gt), 
representing over 85% of the national total CO2 storage resource [1].  
However, several factors –like site geology and business model– challenge the technical feasibility and 
commercial development of CCS projects. Regarding geology-related factors, geologic trap characteristics 
and reservoir properties along with fluids properties constitute most fundamentals aspects to consider for 
CO2 storage site modelling stage and its management. Accordingly, geologic CO2 storage modelling 
(GCSM) is the first step in CO2 storage site appraisal. The GCSM may go from too simplistic analytical 
model to fast approximate data-driven techniques (surrogate models) and to complex reservoir numerical 
simulation which power and cost increase accordingly [2].  
The GCSNM presents some similarities with oil & gas reservoir numerical modelling processes which go 
from a subsurface geology and reservoir data collection, the building of a geo-grid static model, to the 
building of a compositional numerical reservoir model. However, it may differ when geochemical and 
geomechanical effects of CO2 injection must be considered. In addition, modelling larger area usually must 
be carried out to capture the long-term migration of CO2 plume, longer time scales to monitor post-injection 
CO2 movement, and brine management, among others. 
Although GCSNM is considered a comprehensive technique to understand the CO2 behavior in geologic 
store sites, questions arise about how often the GCSNM can be used when it is applied to multiple sites and 
for wide variation ranges of aquifer parameters to be sensitized. In addition, how much time the typical 
timeframe of CO2 storage appraisal process can be reduced when it has been shown to be time-consuming. 
In the other hand, the urgency to reduce CO2 emissions requires more storage sites been classified as ready-
to-inject, which demands quicker but efficient GCSM process.   
Proxy (surrogate) reservoir models are considered an alternative to GCSNM by utilizing plenty numerical 
reservoir data and generating approximate results with significant reduction in computational cost and at 
the same time honoring reservoir variability when referring to several geologic storage sites assessment. 
Among such proxy techniques are machine learning (ML) approach, particularly artificial neural networks 
(ANN), which have proven to be efficient tools to relate inputs and outputs from a high-dimensionality 
processes such as GCS [3]. This is what this work is about and its application for GCS modelling in saline 
aquifers lacking numerical modelling. 
The ANN model developed is fed by a parametrical dataset resulting from implementing an experimental 
design-based numerical realizations process. The experimental design is performed via an optimization 
tool. Input to the ANN-GCS model are reservoir characteristics and elapsed times, and as output there 
would be indicators related to CO2 trapping efficiency and cumulative volume of injected CO2.  
The numerical aquifer base model was derived from an existing saline aquifer numerical model called 
Bunter Closure 36 which is one of multiple dome-like shape geological structures (anticlines) located in 
the UK Continental Shelf (UKCS), more specifically in the Southern North Sea (SNS) area [4]. It is worth 
mentioning that SNS presents a considerable number of saline aquifer anticlines which lack numerical 
models. In addition, SNS is close to an important group of Southern East onshore’s CO2 emitters which 
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makes SNS area a strategic place with transport and storage conditions necessary to deploy CCS projects 
[5]. Therefore, therein lies the study’s contribution which will help to speed up the assessment of such 
group of saline aquifers and to the best of my knowledge, this is the first adoption of ML technique as 
predictive tool to evaluate GCS performance for deep saline aquifers in Bunter Sandstone formation in SNS 
area for UKCS.  

1. Theory 

Guidelines have been discussed to characterize underground geological storage sites by numerical 
modelling [6]. In general, GCSNM has most of elements of an oil & gas reservoir numerical modelling. A 
multidisciplinary approach is needed to reconstruct geologic site architecture (static modelling) by 
describing its geometry, boundaries, and quantifying reservoir rock properties. In addition, multi-phase 
flow, geochemical, and geomechanical phenomena are modelled by a numerical model (dynamic 
modelling) from which injection scenarios, development plan, optimization, and risk assessment can be 
derived. A comprehensive GCSNM provides estimates of storage volume, injection capacity, geological 
containment assurance for long-term, and leakage risk assessment.  
 

Numerical simulation of geologic CO2 storage (GCS)  
The CO2 geo-sequestration numerical modelling require a high-fidelity geological model an involves the 
solution of 1) transport of reactive multi-components multiphase flow (Darcy’s Law), 2) equations for 
thermodynamic equilibrium between gas and aqueous phase (Equations of State), and 3) mineral 
dissolution/precipitation reaction equations. General governing equation for CO2 storage numerical 
dynamic modelling is described as follows, assuming phase and thermal equilibrium [7]: 
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The convection term expresses the multi-phase flow of components caused by a delta pressure (DP) and 
explained by Darcy’s law (considers kr,	µ,	r). The second term represents the rate of diffusion and dispersion 
of CO2 in the liquid phase (solubility). Source term for CO2 injection is given by injection and reaction due 
to precipitation and dissolution mechanisms derived from rock-fluids interactions. The right-side term 
expresses accumulated molar volume of components in the control volume which is function of saturation 
of components and porosity. Gas density (rg) can be estimated by appropriate EOS. Gas viscosity (µg), 
water density (rw) and water viscosity (µw) in the aqueous phase are calculated with proper correlation. 
Regarding an efficient design of dynamic models, a coarser grid model is usually required due to the initial 
large size and finely gridding static model. Coarser grid is used to improve the computational efficiency of 
the dynamic model. This is crucial as the model will be run for hundreds or thousands of years into the 
future. 
 

GCS performance assessment for deep saline aquifer 
The performance quantification of underground CO2 containment is one of the main requirements to 
identify potential storage site. Therefore, identification of acting underground CO2 trapping mechanisms 
plays a significant role in assessing the CO2 storage performance. CO2 storage performance may vary 
depending on location (sedimentary basin), reservoir characteristics, and timescales. Structural, residual 
gas, solubility, and mineral CO2 trapping mechanisms have been identified as main ways for trapping CO2 
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in saline aquifers [8]. Most of trapping mechanisms have been described in reported literature as trapping 
indices, as follows:  
 

Residual	Gas	Trapping	index	RTI(t) =
Total	mass	of	CO:	trapped	as	residual	gas	at	time	t

Total	mass	of	CO:	injected	at	time	t
			(𝐸𝑞. 1.2) 

 
Solubility	Trapping	index	STI(t) =

Total	mass	of	CO:	soluble	in	brine	at	time	t
Total	mass	of	CO:	injected	at	time	t

																									(𝐸𝑞. 1.3) 

 
A trapping index defined as Structural Trapping Index (StTI) is introduced in this work and it is defined as: 
 

Structural	Trapping	index	StTI(t) =
Total	mass	of	CO:	trapped	by	buoyancy	at	time	t

Total	mass	of	CO:	injected	at	time	t
									(𝐸𝑞. 1.4) 

 
 

GCS numerical modelling (GCSNM) in UK  
There are several studies reported in literature about characterizing geologic CO2 storage sites in UK which 
go from analogues, analytical, to large-scale and detailed UCS numerical modelling [1,9,10]. The most 
comprehensive characterization study of GCS sites in UK was carried out by ETI (Energy Technologies 
Institute) [1]. This project identified several CO2 storage sites and carried out detailed modelling to selected 
sites given their potential contribution to pivot commercial-scale carbon capture and storage projects for 
power and industry emitters, and to de-risk these stores for future storage developers. Among selected sites 
were Bunter Closure 36, Viking Gas Field, Captain Aquifer, Hamilton Gas Field, and Forties 5 Aquifer. 
Special attention has been given to water-bearing Bunter Sandstone formation (deep saline aquifer) in the 
Southern North Sea (SNS) area, UK Continental Shelf (UKCS). SNS area, in addition to contain large 
closure structures (anticlines), it is close to an important group of UK’s CO2 stationary emitters. Estimation 
of up to 20 MtCO2 per year for a 50-years injection timeframe was obtained by numerical dynamic 
modelling of NE part of Southern North Sea [10]. More details about Bunter 36 aquifer modelling results 
are given in methodology section since it was selected as base numerical model for this study. 
Although GCSNM is a comprehensive technique to understand the long-term geological CO2 storage 
behavior, it is a multi-parametrial and multi-scale process and it requires quantity, quality, and variety of 
data. In addition, characterizing geological storage can take years, especially less-studied saline aquifer 
sites so, it has shown to be time-consuming and with relatively high cost. For instance, BEIS (Business, 
Energy, and Industrial Strategy, BEIS) considers that the site characterization (static and dynamic 
modelling) of a UCS project may take between 1 to 4 years [1].  
 

Machine learning approach for GCSNM   
Proxy models (e.g. machine learning) have been applied to model lifecycle of CO2 geo-sequestration 
creating simplified approaches of reservoir responses in place of the reservoir simulators [3]. Among 
machine learning (ML) techniques are artificial neural networks (ANN) [2,11,12]. 
In general, ANN consists of an input layer, one or more hidden layers, an output layer, and transfer functions 
with the goal of finding nonlinear relationship among variables. In the context of GCS modelling by a 
neural network architecture, mathematical formulation is as follows: 
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Where 𝑥! is input parameters, 𝑦8 is output variables, both from numerical realizations dataset. 𝑤!" are input 
and hidden layers link connections’ weight from i to j node, 𝑏" and 𝑏8 are bias for the hidden and output 
layers respectively.  𝑓; and 𝑓< are transfer nonlinear functions for hidden and output layers; m and n are 
number of hidden nodes and input variables respectively. 
This work will develop an ANN-based model to predict trapping efficiencies and CO2 injected volume to 
surrogate GCSNM process to a group of deep saline aquifers as an early-stage appraisal of the potential of 
a UCS site and as an alternative to geologic sites assessment lacking numerical models. 
 
 

2. Methodology 

The ANN-based GCS modelling (ANN-GCS) workflow proposed in this work is illustrated in Figure 2.1  
 

 
Figure 2.1 Workflow for GCS dynamic modelling by Artificial Neural Network 

 
The methodology applied to study case is described as follows: 
 
Step 1: GCS numerical aquifer base model design. One relevant aspect of an aquifer numerical base model 
to be used is its flexibility in honor geological typology, reservoir properties variations (heterogeneities), 
and operating conditions. As a result, a synthetic aquifer model that matches aquifers variant is guaranteed. 
The Bunter 36 saline aquifer numerical model was chosen from the select site inventory of ETI (Energy 
Technologies Institute) which is an open license data base [1]. Bunter sandstone is a geologic formation 
which domains in the Southern North Sea (SNS) area. The SNS is characterized by large anticlines which 
represent a strategic national geologic storage resource. In addition, it is close to an important group of 
UK’s CO2 stationary emitters (fossil fuel-based power stations) and is located near future shore terminal 
Barmston Beach [5].  
Bunter Closure 36 aquifer is a dome-like structure, and it is 1200m below sea level and 200m thick. ETI’s 
study concluded that competent caprocks (impermeable strata) exist above (Rot Halite Formation) and 
below (Bunter Shale) and likelihood of CO2 leakage risk due to geological failure of such caprocks is low 
[6]. On the other hand, based on a geochemical modelling undertaken in the same ETI study, the impact of 
CO2 injection with time over mineralogical changes is low due to a low rate of reaction in the reservoir 
given the quartz-dominated mineralogy and low temperature would not reach equilibrium even after 10,000 
years, hence it suggests negligible impact on the injection timescale to be defined in this study [6]. 
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Therefore, geomechanical and geochemical phenomena will not be modelled in our study, hence numerical 
complexity will be reduced. 
The original grid of Bunter Closure 36 is 124x134x41 (total grid number of 681,256) with four injection 
wells run in 1 hour. In this study, the model was upscaled to 84x94x15 size (total grid number of 118,440) 
to optimize the run time to around quarter hour. It is worth mentioning that the upscaling has been weighted 
to ensure that a representative value of properties has been captured at coarser model.  The top and bottom 
boundaries were set as closed, with no flow, while boundary conditions of four sides were set as open 
because non geological features at boundaries are described in its geomodel, hence it is considered infinite 
acting aquifer.  
Figure 2.2 illustrates a version of the original numerical dynamic model of Bunter Closure 36 aquifer from 
ETI’s study which served as base model to generate an aquifer synthetic dynamic model. CO2 trapping 
indices were previously forecasted by ETI’s study under injection scenario of 56 years, resulting in 73% of 
the CO2 injected mass is structurally trapped (StTI), 22% residually trapped (RTI), and 5% dissolvably 
trapped (STI) respectively at the end of period. 
Table 2.1 shows aquifer parameters and constraints of the model. ETI’s study forecasted for 40-years and 
56-years of injection period, totally 280 and 391 MtCO2 respectively (dynamic storage capacity). Those 
results will be used as reference to validate the ANN model.  
 
 

 

 
Figure 2.2. Upscaled numerical dynamic model of Bunter Closure 36 aquifer 

 
 

 
Table 2.1. Properties and constraints of Bunter Closure 36 aquifer model. 

 
 
Step 2: Output parameters selection for CO2 storage performance assessment. To estimate the 
effectiveness of CO2 trapping in the aquifer, output parameters related to CO2 trapping efficiency will be 
used in this study (equations 1.2 to 1.4). In addition, injected CO2 volume is a parameter included, which 
is related to trapping indices which are fractions of total CO2 injected volume. 

Parameter Value Parameter Value

Porosity (fraction) 0.2 Reservoir pressure @ 1,170 m, bar 119
Horizontal permeability (miliDarcies, mD) 210 Reservoir temperature, °C 45
Thickness (m) 200 Rock fracture pressure @ 1,170 m, bar 197
Reference depth (m) 1170 Max. well bottomhole pressure @ 1,170 m, 148
Salinity (ppm) 250,000 CO2 injection rate per well (Mton/year) 1.75
Residual gas saturation (fraction) 0.3 Number of injection wells 4
Vertical to horizontal permeability ratio, 0.35 Start of injection, year 2027

Injection evaluation period(s), years 40 and 56
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Step 3: Input parameters selection and sensitivity analysis. Ranges of CO2 storage affecting factors were 
studied and selected from previous works, such ETI’s study, and based on data from UKCS’ aquifers. A 
sensitivity analysis for Bunter Sandstone 36 aquifer model to identify the most influential factors affecting 
CO2 sequestration capacity was carried out in ETI’s project [6]. During sensitivity analysis a randomized 
values selection process of each influential factor was performed. ETI study’s parametric sensitivity 
analysis showed that storage capacity is negatively affected by wells design factors such as closer wells 
placement, greater number of injection wells, and higher injection rate, all of them significantly increasing 
reservoir pressure near rock fracture pressure. Such drawback effects related to wells design were addressed 
and optimized during ETI’s study. Similarly, reservoir properties also adversely affected storage capacity 
such as smaller aquifer size, lower permeability, lower vertical to horizontal permeability ratio, and lower 
residual gas saturation. In summary, to honor aquifer model parametrial variability, most affecting factor 
were porosity (j), permeability (k), vertical to horizontal permeability ratio (kv/kh), salinity, residual gas 
saturation (Sgr), and injection rate [6].  
Table 2.2 reflects range of influential factors (input parameters) used during design of experiment to 
generate numerical realizations which were later used to create dataset for training the ANN model.  
 

 
 

 
Table 2.2. Ranges of influential factors upon storage performance. 

 
 
Step 4. Design of experiment (DoE) and data post-processing. Hundreds, even thousands of numerical 
experiments may be required to feed an ANN model. In this work, experiments were launched in the 
compositional simulator CMG-GEM and automated by an optimizer software (CMG-CMOST) considering 
the range of input variables. A design of experiment (DoE) or sampling technique was required to 
synthesize experiments/simulation data. This DoE process was performed based on Monte Carlo’s 
approach. To analyze the effect of extended injection period on cumulative volume of CO2, the design of 
experiment was carried out for longer injection period (100 years) in comparison to 56 years of maximum 
injection period defined by ETI’s study [6].  
 
Step 5. ANN architecture design, train, and testing. A supervised machine learning (ML) model was 
developed in this study based on ANN approach. The ANN algorithm was fed with dataset from DoE cases 
(step 4). Once the dataset was cleaned and adequate at format to feed the proxy model, it was randomly 
divided in training and testing, splitting data with a starting point of 80% and 20% respectively. The ANN 
model architecture was designed in Python programming language and the library Keras with Tensor Flow 
was used. The model in this study was based on the perceptron approach devised from human neural 
neurons. The rectified linear unit (ReLU) function is the most used activation function because of its lower 
run time than other functions. Finally, the ANN model predicted RTI, STI, StTI, and CO2 injected volume. 
Optimization of numbers of neurons and hidden layers.  
The definition of number of neurons and hidden layer is an important process during the artificial neural 
network design because it impacts its performance for modelling. To find optimal number of layers and 
nodes, a trial-and-error process is performed based on different sizes of both layer and node units added 

 Input  variables minimum most likely maximum

Porosity (fraction) 0.03 0.2 0.4
Permeability (mD) 0.1 200 2300
Salinity (ppm) 1,000 200,000 500,000
Residual gas saturation (fraction) 0.05 0.3 0.5
Kv/Kh (fraction) 0.01 0.36 0.8
CO2 total injection rate (MT/year) 1.5 7.0 10.0
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one a at time until best performance is obtained. Around 40 neurons and 3 layers were considered as the 
optimal ANN architecture. 
 
ANN-GCS performance assessment. Expected performance of ANN model was defined by adopting two 
error functions such as the coefficient of determination (R2) and the root mean squared error (RMSE). R2 
magnitudes the variance from dependent variable, being R2 near 1 indicative of best performance and vice 
versa. Equation is shown as follows: 
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where  𝑦!"#$ is the actual value, 𝑦!%&'( is the predicted value, and 𝑦"!%&'( is the average of predicted values. 
Regarding RMSE, it expresses the spread of predicted errors giving an idea about how close or far is the 
data from the regression model so, the lower RMSE the more accurate performance and vice versa. The 
equation is: 
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Step 6. ANN-GCS model field application. In this task, basic input data was used from similar geologic 
sites in SNS area to evaluate stability of new ANN model and to ensure the applicability of the predictive 
model to similar CO2 storage sites lacking numerical models. 
Field application of the developed ANN-GCS model was conducted using basic parameters from the 
CO2Stored® public UK’s database by selecting some CO2 potential aquifer storage sites, specifically a 
group of Bunter Sandstone aquifers [14]. In addition, following premises were considered: 
  • Present geologic similarities (anticline closures) like the base aquifer model used to train the NN model. 
  • Migration and leakage through the sealing caprock is not considered to be major risk. 
  • They are located relatively close to the biggest concentration of carbon emitters in the UK.  
  • The same number of injection wells are expected from comparative development concept (4 injection 
wells). 
  • Injection period of 100 years. 
 
Four (4) Bunter Sandstone closure aquifers were selected from the CO2Stored® database to predict their 
trapping indices and CO2 cumulative injected volume, which values have not been before predicted because 
such aquifers lacking numerical models. The same input parameters used to train the ANN model were also 
used for field application of the new ANN-GCS model, as shown in Table 2.3.  Bunter Closure aquifer 3, 
9, 35, and 40 were selected from CO2Stored® database repository. Worth noting that Bunter Closure 36, 
which was the aquifer base model, is just presented in the table as reference. 
 
 

 
Table 2.3. Basic data of selected Bunter Sandstone aquifers (CO2Stored® database). Field application. 

Site Description 
Porosity,

 frac
Permeability, 

mD
Kv/Kh ratio Residual Gas 

Saturation
Thickness, 

m
Salinity, 

ppm
Total Injection rate (P50) 

Mt/yr

Bunter Closure 3 0.21 350 0.3 0.3 240 180000 5
Bunter Closure 9 0.21 350 0.3 0.3 300 180000 15
Bunter Closure 35 0.26 400 0.3 0.3 245 180000 10
Bunter Closure 36 (as reference) 0.2 200 0.35 0.3 220 200000 7
Bunter Closure 40 0.2 271 0.3 0.3 230 180000 2
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3. Results 

Approximately 700 numerical realizations were generated and 690 selected during DoE process and post-
processing of data.  Figure 3.1 illustrates trapping indices profiles and CO2 cumulative injected volume vs. 
time from numerical realizations (light blue curves). In addition, the original aquifer base case is shown 
(black curve). Elapsed times comprising 690 samples each were defined. Finally, 8,280 samples for a total 
of 12 elapsed times (1, 5, 10, 20, 40, 70, 120, 140, 170, 220, 240, 272 years) from year 2028 to 2300 were 
post-processed to build the final dataset feeding the ANN model to predict of trapping indices and CO2 
injected volume over time. 
During DoE process, defined input parameters to be used in ANN model are randomly generated. Among 
parameters collected from numerical realizations were porosity (j), k, kv/kh, residual CO2 saturation Sgr, 
injection rate, and elapsed time. In addition, trapping indices (RTI, STI, and StTI) and CO2 injected volume 
were collected as output to ANN model. Collected data will be used to feed the ANN model during training, 
testing, and validation process. 
 
 

 
  

Figure 3.1. Trapping indices and injected volume profile distribution from DoE process. 
 
Figure 3.2 illustrates the range of CO2 cumulative injected volume from the DoE process expressed in a 
histogram. Considering 95% of numerical experiments, the average cumulative volume for 100-years of 
injection was 329 Mt (ranging from 115 to 560 Mt) respectively.  
 
 

 
Figure 3.2. CO2 cumulative injected volume histogram from DoE processes. 
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Regarding ANN model, an optimal performance was achieved for RMSE 0.0034 and R2 0.998. In the other 
hand, the comparison between training data and predicted data with testing data and respective predicted 
data resulted in R2 of 0.96 and 0.95 respectively, and RMSE of 0.0033 and 0.004 respectively.  
Figure 3.3 shows trapping indices and CO2 cumulative volume profiles for 12 elapsed times (from 1 to 272 
years) which were predicted by the ANN model to each one of the Bunter Closure sites for 100-years 
injection period. A gradual reduction or steady increase of respective trapping indices is observed which 
behaviors may be delayed for longer injection time until their stabilization over time in comparison with 
original 56-year injection period case. On the other hand, structural trapping (StTI) is the most significant 
trapping mechanism during and after injection stops, which trend declines gradually until stabilizes over 
time. Moreover, the solubility process stabilizes, and residual trapping steadily increases over time. Worthy 
to mention that CO2 cumulative injected volume variation is strongly related to aquifer reservoir properties 
and constrains related to operating conditions (injection rate and pressure limit). 

 
 
 

 
Figure 3.3. a) Trapping indices, b) CO2 injected volume predictions by the GCS-ANN model for 100-years injection. 
 
 

Table 3.1 summarizes average trapping indices at the end of year 2300 for the 100-years injection case 
predicted by ANN model and they are compared with indices from the original 56-years injection case. It 
appears that the later the injection stops the greater the delay in trapping processes stability.  
 

 

 
Table 3.1. Average trapping indices comparison at end-period. 

 
 
On the other hand, CO2 injected volume (dynamic storage capacity) of selected sites were predicted for a 
100-year injection period and are shown in Table 3.2. Results indicate that about 70% of theoretical 
volumetric capacity is reached at 100-year injection period.  
Based on these results, selected aquifer sites from field validation process may be considered preliminarily 
de-risked by using the new ANN-GCS model and it can be said that up to 2.1 Gt of CO2 may be 
accommodated and classified as ready-to-be-considered as potentially feasible storage sites in UK. 

 
 

Injection 
Scenario

Average Solubility 
Trapping Index, %

@ end period (year2300)

Average Residual 
Trapping Index, %

@ end period (year2300)

Average Structural 
Trapping Index, %

@ end period (year2300)

56 years 5 18 77

100 years 6 11 83
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Table 3.2. CO2 injected volume for 100-years injection case vs. theoretical volumetric capacity. 

 
Finally, an execution time comparison between the traditional numerical reservoir modelling and the 
approach of combining both numerical and ML model (ANN model) is shown in Table 3.3, from which 
just the reservoir numerical simulation job for 5 similar sites could take 1 year using the same hardware 
used in this study, and the combination of both technologies (ML + numerical simulation) could take 4 
months, hence 8 months were saved which may represent 66% of time and cost saving considering a mostly 
labor-based cost model. 

 
 

 
Table 3.3. Execution time (months) comparison between both numerical and numerical +ML approaches 

 

Discussion 

One thing to highlight from the results is that stabilization of every trapping index is lagged as injection 
period is active. Once injection stops, it starts an increase in residual trapping and gradual reduction in 
structural trapping mechanism as time goes by.  
Regarding cumulative injected volume during simulation period, the most rapid pace in cumulative volume 
trend occurs for the first decades (~50 years), period after which well injection rates drop drastically as 
reservoir pressure is closer to fracture pressure limit. Therefore, greater CO2 cumulative volume occurs as 
reservoir pressure is maintained far from caprock fracture pressure. 
Reaching the theoretical volumetric capacity will depend on geologic properties, operating conditions, and 
injection time. Hence, larger closures will require pressure management-based brine production to reach 
theoretical storage capacity.  

Conclusions 

• The developed ML-based model using ANN showed 95% performance and predicting time variations of 
trapping indices and CO2 cumulative injected volume (dynamic storage capacity) for dome-like shape deep 
saline storage aquifers in Bunter sandstone formation at Southern North Sea area in UK. It is expected that 
this approach can address the lack of numerical models for similar aquifers in the area. 

Aquifer Site*

Theoretical 
Volumetric 
Capacity *

(Mton)

end-period CO2 injected 
volume. 100-yrs injection

(Mton)

Bunter Closure 3 409 432
Bunter Closure 9 1691 432
Bunter Closure 35 554 456
Bunter Closure 36 232 (350 ***) 397 (398 **)
Bunter Closure 40 411
TOTAL 3,004 2,128

* Taken from CO2Stored® database

** from numerical simulation
*** Volumetric capacity from static model
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• For the reservoirs used in this study, the model saved ~8 months of labor hours, resulting in ~ 66% cost 
reduction. And demonstrated that up to 2100 CO2 Mt can be storage over at least 100 years of injection 
period. 
• This type of model is a useful tool to quickly predict with good approximation the CO2 storage 
performance in saline aquifers and other types of geological storage sites at an early stage of a UCS project 
just by using basic geologic data.  
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