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Abstract 

I compare three repeatability measures using the time lapse data from Sleipner CO2 storage project 
in offshore Norway. The three repeatability are NRMS, predictability, and cross-correlation 
coefficient. I first review the work of Kragh and Christie (2002) who used NRMS and predictability 
and created a random noise model to explain their relationship. Using the Sleipner dataset, I show 
an excellent fit to their theory. I then review the work of Coléou et al. (2013), who used NRMS 
and cross-correlation measures and introduced two new attributes: quality indicator (Q) and 
anomaly indicator (A). After discussing the relationship between predictability and cross-
correlation I apply the Q and A attributes to the Sleipner dataset, showing how well the CO2 plume 
can be identified.  

Introduction 

As shown in Figure 1 (Ghaderi and Landrø, 2009), the Sleipner storage CO2 project is roughly halfway 
between Scotland and Norway, in the Norwegian sector of the North Sea.  In this project CO2 is separated 
from the produced gas in the Sleipner West Gas Field and injected into the Utsira saline formation. 
The Utsira formation is 800-1000 m deep, highly porous (36-40%) and permeable (1-8 D).  
Approximately 1 million tons of CO2 per year has been injected into Sleipner since 1996. By 2010, 
12 Mt of CO2 had been injected into the reservoir.   

Seismic monitoring started with a base survey in 1984, before injection. Monitor surveys were 
done in 1999, 2001, 2004, 2006, 2008, and 2010. This 4D dataset was released to the public by 
Equinor and is freely downloadable. The Sleipner seismic dataset consists of 28 volumes, the full, 
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near, mid, and far stacks for each of the seven vintages of data: 1994,1999, 2001, 2004, 2006, 2008 
and 2010.  

 
Figure 1.  Geology of the Sleipner CO2 storage project (Ghaderi and Landrø, 2009). 

In this study, I will apply several repeatability measures to the base and monitor surveys to analyze 
the footprint of the injected CO2. 

Theory 

The three repeatability measures I will use in this study are the normalized root-mean-square (NRMS) 
approach, predictability (PRED), and cross-correlation coefficient (r).   Let’s first review the work of Kragh 
and Christie (2002) who used NRMS and PRED as their two indicators.  NRMS between the base (b) and 
monitor (m) surveys is defined as 

,     (1) 

where is the RMS estimate over trace samples xt using a time window from time 

t = t0 to t = tN.   Note that the limits of the NRMS are from 0 to 200.   

The predictability, or PRED, is defined as 

,       (2) 

where fbm(t) is the cross-correlation between the base and monitor traces from lags between -and +max 
lag, fbb(t) is the autocorrelation of the base trace, and fmm(t) is the autocorrelation of the monitor trace 
between the same lags.  The limits of the predictability are from 0 to 100%. 
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Kragh and Christie (2002) then show that the relationship between NRMS and PRED can be computed 
theoretically when adding random, or white, noise to a reference trace, and comparing the noisy trace to the 
original reference trace.  The formulae for the two repeatability measures are given as 

, and    (3) 

,     (4) 

where l is the ratio of the white noise amplitude to the seismic amplitude.  Notice that the highest value of 
NRMS is now 141 rather than 200, which comes from the theoretical definition of signal-to-noise ratio.  To 
visualize these relationships, Figure 2 shows a plot of PRED versus NRMS for values of l from 0.01 to 10. 
Notice that this plot is Gaussian, or bell-shaped. In the next section I will show that the real data cross-plots 
derived from the Sleipner dataset conform extremely well to this theoretical shape. 

 
Figure 2. Plots of PRED versus NRMS from the relationships in equation 3 and 4. 

 

The third repeatability indicator, correlation coefficient, or r, is the ratio of the maximum cross-correlation 
value at lag tmax divided by the product of the square roots of the autocorrelations, or 

.     (5) 

Equation 5 finds a single correlation coefficient, whereas the predictability in equation 2 computes an RMS 
average over a series of lags.  The advantage of using cross-correlation is that the time shift tmax between 
the base and monitor surveys can be used to align the two surveys.  The advantage of the predictability 
measurement is that it gives a smoothed correlation result. 

To quantify the amount of smoothing that occurs when using predictability as compared to correlation 
coefficient with, Kragh and Christie (2002) assume that the effect the number of lags used in the 
computation of predictability can be simulated by adding a damping factor to equation 4, or 
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,      (6) 

where d is the damping factor.   

Coléou et al. (2013) extended the work of Kragh and Christie (2002) by considering the statistics behind 
r and NRMS and using these two measures in their cross-plot.  Figure 3 shows a set of points from a 4D 
survey with two solid curves and a set of dashed lines superimposed.   Figure 3(a) is a plot of correlation 
coefficient versus NRMS2/2 and Figure 3(b) is a plot correlation coefficient versus NRMS.  Notice that the 
Kragh and Christie (2002) limits have been normalized by dividing by 100. 

The dashed curves in Figure 3 represent what Coleou et al. (2013) call quality indicator, or Q, which will 
be defined shortly. The solid red curve is the lower bound when the two datasets have the same variance, 
and can be written as 

.     (7) 

Euqation 7 shows why Figure 3(a) had NRMS2/2 on the x axis, since the curve us linear with respect to 
NRMS2/2. The solid green curve is the lower bound when we add random noise to a seismic trace and 
compare the traces, and can be written as 

.     (8) 

The green curve in Figure 3(b) is almost identical to Kragh and Christie’s equation with a damping factor 
of 0.5, as given in equation 6. 

 
(a)                                                                                                          (b) 

Figure 3.  Plot of (a) r vs NRMS2/2, and (b) r vs NRMS, showing lines of constant Q (Coléou et al., 2013). 
 

Coléou et al. (2013) also introduced two new repeatability indicators.  The first is called the quality 
indicator, Q, which is shown by the dashed red lines in Figure 3, and which is defined mathematically as 

,    (9) 
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where , s = standard deviation, and Cov = covariance, and b and 

m are the base and monitor surveys.  I have arranged equation 9 slightly differently than Coléou et al. (2013) 
to make it more interpretable.  Notice that the equation consists of the difference between r and NRMS2/2 
divided by 4 with an added term of 3/4.  Equation 9 explains the dashed red lines on Figure 3(a), which 
represent lines of constant Q.  Consider the line extending at right angles from Q = 0.5.  When NRMS2/2 = 
1 and r = 0, we see that Q = -1/4 + 3/4 = 1/2. But when NRMS2/2 = 2 and r = 1, we see that Q = -1/4 + 3/4 
= 1/2 as well. 

The second indicator defined by Coléou et al. (2013) is called the anomaly indicator A, which is defined 
mathematically as 

,     (10) 

Again, I have arranged equation 10 slightly differently than Coléou et al. (2013) did to make it 
more interpretable.  This equation differs from equation 9 in that it consists of the sum of r and 
NRMS2/2, rather than the difference, which is divided by 2 and has a subtracted term of 1/2.  Figure 
4(a) shows a plot of r versus NRMS2/2 and Figure 4(b) shows a plot of r versus NRMS, where 
both plots now show lines of constant A. 

 

  
(a)                                                                                                (b) 

Figure 4.  Plot of (a) r vs NRMS2/2, and (b) r vs NRMS, showing lines of constant A (Coléou et al., 2013). 
 
The best way to understand that the anomaly indicator A is defined by parallel lines rather than 
orthogonal lines, as in the quality indicator Q, is to substitute values into equation 11.  For example, 
if we look at the solid line where A = 0, note that for NRMS2/2 = 1 and r = 0, we get A = 1/2 – 1/2 
= 0, and that when NRMS2/2 = 2 and r = 1, we again get A = 1/2 – 1/2 = 0.  But as we move to 
larger values of NRMS2/2, this constant value is shifted from zero to larger values. Thus, the A 
indicator is orthogonal to the Q indicator. In the next section, we will apply the theory of both 
Kragh and Christie (2002) and Coléou et al. (2013) to the Sleipner dataset.  
 

2 ( ) [ , ] , 
( ) ( ) ( ) ( )
b m Cov b mNRMS

b m b m
s r

s s s s
-

= =
+

2 / 2 1 
2 2

NMRSA r +
= -



CCUS 4012771  6 
 

Results 
 
First, let’s look at the method proposed by Kragh and Christie (2002).  Figure 5 shows the NRMS differences 
between the base and monitor surveys for the CO2 injection project at Sleipner.  These differences were 
computed over 1200 msec window between times of 400 and 1600 msec. Note the excellent definition of 
the expanding CO2 plume using this repeatability indicator. 

 
Figure 5.  Plot of the NRMS difference between the base and monitor surveys for the CO2 injection project at Sleipner. 

 

Figure 6 shows the predictability differences between the base and monitor surveys for the CO2 injection 
project at Sleipner, again computed over a 1200 msec window between times of 400 and 1600 msec.  Again, 
note the excellent definition of the expanding CO2 plume using this repeatability indicator.  The colour scale 
in Figure 6 is the reverse of the colour scale shown in Figure 5 to show that the anomalous zones have high 
values of NRMS but small values of predictability. 

 

Figure 6.  Plot of the predictability differences between the base and monitor surveys for the CO2 injection project at Sleipner. 

 

Figure 7 shows a cross-plot of PRED vs NRMS for the 1994 to 2010 survey comparison, where the colour 
represents crossline number. Notice the excellent agreement between the theory from the previous section 
(since we expect a Gaussian-type shape) on the data display. On this plot, I have picked an elliptical zone 
on the cross-plot using the anomalous points with low predictability and high NRMS, using the central 
crosslines. Notice how well the CO2 plume is defined by this zone. 
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(a)                                                                      (b) 

Figure 7. (a) A cross-plot of predictability against NRMS, with an elliptical zone picked around the central crosslines, where (b) shows the 
anomalous zone. 

 

Next, let’s apply the indicators defined by Coléou et al. (2013). The correlation coefficient between the 
base and monitor surveys for Sleipner is shown in Figure 8, where the value ranges from 0 (no correlation) 
to 1 (perfect correlation).  These differences were computed over 1200 msec window between times of 400 
and 1600 msec, as was done for both the NRMS and predictability results shown earlier. The expanding 
injection plume is clearly defined by low cross-correlation values. 

 

 
Figure 8. The correlation coefficient between the base and monitor surveys for Sleipner. 

 

Figure 9(a) shows a cross-plot of r versus NRMS between 1994 and 2010, with the colour scale representing 
crosslines.  Note how well the lower limit of the plot corresponds to the theory.  Figure 9(a) also shows an 
elliptical zone picked on the cross-plot using the middle crosslines.  Figure 9(b) shows the points from the 
anomalous region projected onto the seismic map, which corresponds very closely to the injection plume. 
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(a)                                                                     (b) 

Figure 9. (a) An elliptical zone around the central crosslines with an elliptical zone picked where (b) shows the anomalous points. 

 

Next, I created the quality indicator (Q) map and the anomaly indicator (A) map, using the mathematical 
relationships given in equations 9 and 10.  These two maps are shown in Figures 10(a) and (b). 

 

 
(a)                                                             (b) 

Figure 10. (a) Quality indicator (Q) map, and (b) anomaly indicator (A) map. 

 

The quality indicator map is similar to the cross-correlation map, but the anomaly indicator shows some 
interesting features not seen in previous maps. 
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Next, I cross-plotted the two maps from Figure 10.  Figure 11 shows the cross-plot of the two new attributes 
with Q shown on the vertical axis and A shown on the horizontal axis.  The histograms of the two attributes 
are also shown.   In Figure 11(a), the low values of Q from the cross-plot have been picked with an elliptical 
zone, which correspond to the CO2 plume, as shown in Figure 11(b) 

 
(a)                                                                                                          (b) 

Figure 11. (a) An elliptical zone around the central crosslines in the plot of Figure 21, where (b) shows the anomalous zone. 

 

Finally, Figure 12(a) shows four picked rectangular zones from the cross-plot of Figure 11, where Figure 
12(b) shows the corresponding mapped areas. 

 

                                                          (a)                                                                                                                 (b) 

Figure 12. (a) Four rectangular zones have been picked on the plot of Figure 22, where (b) shows the anomalous zone. 

 

In the map of Figure 12(b), we can now clearly see multiple zones within the anomalous area, where the 
purple zone defines the non-anomalous area and the green, blue, and red zones define areas of interest 
within the anomalous area.   
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Discussion 

In this study I have computed and compared five different repeatability measures using the time 
lapse data from Sleipner CO2 storage project in offshore Norway. These repeatability measures 
were NRMS, predictability, and cross-correlation coefficient, or r, quality indicator (Q) and 
anomaly indicator (A) which, as shown by Coléou et al. (2013), were weighted combinations of 
NRMS and r.  
 
Note the similarity of the cross-correlation coefficient and quality indicator maps, and between the 
NRMS and predictability maps (although the colour scales are reversed in these two maps, since 
on NRMS the high values are anomalous and on predictability the low values are anomalous). 
However, the anomaly indicator map shows interesting features, suggesting it may be a useful new 
indicator to use.  The real power of these plots is when they are cross-plotted and interrogated 
using interactive zone picking, as shown in Figures 11 and 12.  The zones in Figure 12(b) could 
be matched up with different amount of injected CO2 within the storage area, and future research 
will try to identify such zones. 

Conclusions 

In this study, I compared repeatability measures using the time lapse data from Sleipner CO2 
storage project in offshore Norway. I first reviewed the work of Kragh and Christie (2002) who 
cross-plotted NRMS and predictability and created a random noise model to explain the 
relationship between the two indicators. Using the Sleipner dataset, I was able show an excellent 
fit to their theory.  

I next reviewed the work of Coléou et al. (2013), who used a cross-plot of NRMS versus cross-
correlation coefficient. Coléou et al. (2013) also introduced two new attributes: Quality Indicator 
(Q) and anomaly indicator (A). After discussing the relationship between predictability and cross-
correlation I then analyzed the mathematics behind the Q and A indicators and applied these 
indicators to the Sleipner dataset. For each repeatability indicator the anomalous CO2 plume in 
Sleipner as a function of time lapse study could be identified, and each indicator gave us a unique 
perspective on the morphology of the CO2 injection zone.  
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