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Abstract 

It is crucial to monitor the CO2 plume effectively throughout the life cycle of a geologic CO2 sequestration 
project to ensure safety and storage efficiency. However, the computational cost of existing data 
assimilation methods can be prohibitively expensive due to the complex physics with multi-component 
non-isothermal simulation and high dimensionality of large-scale reservoir models. We address this 
challenge by proposing an accelerated deep learning-based workflow for model calibration and prediction 
of CO2 plume evolution in the reservoir. 

In the proposed workflow, a neural network model utilizes available monitoring data such as downhole 
pressure and temperature measurements as inputs and predicts the diffusive time of flight (DTOF) map as 
a representative reservoir image of the flow field. Reservoir model calibration can be implemented by 
selecting the ensemble of the training data samples that describes the predicted DTOF map.  The 
computational efficiency of the framework is significantly enhanced in two ways. First, instead of using 
multiple CO2 saturation maps for different timesteps, a single DTOF map is used as the output image. The 
DTOF is the arrival time of pressure front propagation, which can be computed by the Fast Marching 
Method (FMM) rapidly without simulations. Since the reservoir dynamics is compressed into a single 
DTOF image, the memory and computational cost are reduced significantly. Second, an optimum 
coarsening of geologic model is applied, which substantially reduces the training data generation cost. The 
optimum coarsening scheme is utilized to maximize the computational time reduction and minimize the 
error of simulated monitoring data, such as well pressure and temperature data. 

The power and efficacy of our workflow is demonstrated by application to the Illinois Basin-Decatur Project 
(IBDP), a large-scale CO2 storage test in saline aquifer. The data assimilation process is implemented 
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rapidly by the proposed workflow with given field measurements including distributed pressure and 
temperature sensing (DTS) data at an injection and a monitoring well. CO2 plume evolution is predicted 
by running the simulations of the calibrated reservoir models.  

The proposed framework considerably speeds up the training data generation for machine learning, 
enabling rapid assimilation of distributed temperature and pressure data and CO2 plume imaging in large-
scale CO2 storage reservoirs while including non-isothermal and compositional effects. 

Introduction 

Geological CO2 sequestration is known to be a critical technology to reduce anthropogenic greenhouse gas 
emission and decelerate the global warming (Michael et al. 2010, Sharma 2011, Viebahn et al. 2015, Zhou 
et al. 2016, Aminu et al. 2017). The injected CO2 needs to be securely isolated from the surrounding 
environment not only for preventing global warming, but also for securing groundwater and human health 
(Benson and Myer 2003, Wilkin and DiGiulio 2010). CO2 leakage may occur from legacy wells, natural 
fractures and faults (Song and Zhang 2013, Jia et al. 2018, Onishi et al. 2019). Properly understanding the 
reservoir structure and monitoring of CO2 migration is a crucial aspect of CO2 sequestration operation and 
risk management of CO2 leakage. However, traditional history matching workflow can be prohibitively 
expensive for the purpose of efficient and optimal reservoir management. The objective of this study is to 
propose an efficient data assimilation workflow using deep learning and to visualize CO2 plume evolution 
given monitoring data while properly considering the geological and fluid model uncertainties. 

Full-physics numerical simulations for CO2 sequestration reservoirs usually involves millions of grid cells 
and complex physics such as multi-component non-isothermal fluid flow. Although traditional history 
matching workflow such as genetic algorithm is a widely used tool, it requires numerous simulations during 
the algorithm implementation, and it can be computationally prohibitive for field-scale history matching or 
optimization. 

Reduced physics models are widely used to reduce the computational time of numerical simulation. Several 
analytical or semi-analytical solutions have been developed for estimating the CO2 plume migration 
(Nordbotten et al. 2005, Mathias et al. 2008) with an assumption of homogeneous reservoirs. The vertical 
equilibrium (VE) models are commonly used in CO2 storage applications that reduces the spatial dimension 
from 3D to 2D and associated computational cost (Møll Nilsen et al. 2011, Bandilla et al. 2014, Guo et al. 
2014, Nilsen et al. 2016). A fast connectivity-based proxy was proposed by Jeong and Srinivasan (2016) to 
approximate CO2 plume migration in 3D heterogeneous reservoir. The fast-matching method (FMM)-
based rapid simulation has been developed to significantly reduce the CPU cost via coordinate 
transformation from 3D to 1D (Zhang et al. 2016) or multi-domain multi-resolution upscaling (Chen et al. 
2022) using the diffusive time-of-flight (DTOF) (Sethian 1999, Datta-Gupta et al. 2011). Iino et al. (2020) 
applied the FMM-based rapid simulation to unconventional shale reservoirs with CO2 huff ‘n’ puff 
considering multicomponent fluid flow, in which more than two orders of magnitude speed up is achieved. 
Streamline simulation is also a powerful tool to reduce the computational time. Tanaka et al. (2014) 
developed a 3-phase compositional streamline simulator and demonstrated its application to CO2 injection 
case. Streamline can also provide an efficient history matching workflow, which has been applied to CO2 
injection problems (Vasco et al. 1999, Datta-Gupta and King 2007), for example, post-combustion CO2 
water-alternating-gas (WAG) injection (Olalotiti-Lawal et al. 2019) and geologic CO2 sequestration in 
depleted oil reservoir (Yao et al. 2021). 

Over the past few years, there are a lot of development related to machine learning technologies to predict 
CO2 plume evolution for CO2 injection problems. Chen et al. (2018) applied Multivariate Adaptive 
Regression Splines proxy model for the filtering-based data assimilation process to quantify uncertainty of 
CO2 leakage. A special type of Recurrent Neural Networks called Statistical Recurrent Unit (SRU) was 
applied to the routine well injection/production measurements to estimate the inter-well connectivity in 
post-combustion CO2 water-alternating-gas (WAG) injection reservoirs (Chen et al. 2021, Sen et al. 2022). 
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Convolutional Neural Networks (CNNs) is a key technology for image data prediction, and it is widely 
used for predicting the subsurface pressure and saturation distribution. Zhong et al. (2019) developed a 
conditional deep convolutional generative adversarial network (cDC-GAN) to predict CO2 plume 
migration in a heterogeneous reservoir with a single injection well. Mo et al. (2019) applied the deep 
convolutional encoder-decoder to CO2-water multiphase flow systems to predict snapshots of the CO2 
saturation and pressure at different timesteps. Wen et al. (2021) proposed a residual U-Net (R-U-Net) based 
surrogate model to predict the CO2 plume migration under different permeability fields, injection history 
and injection location in a single injector scenario. Then, Tang, Liu, et al. (2021) extended the recurrent R-
U-Net architecture so that it can predict 2D and 3D dynamic pressure and saturation. It was applied to oil 
production data assimilation problems with multiple producers and injectors scenarios. An efficient data 
assimilation and uncertainty quantification workflow was also developed by Tang, Fu, et al. (2021) to 
estimate the areal extent of CO2 plume, where R-U-Net was used to predict CO2 plume from permeability 
distribution and well location information. Fourier Neural Operator (FNO) is a cutting-edge machine 
learning technology, which was first applied to CO2 geological storage prediction by Wen, Li, Long, et al. 
(2022). This model substantially speeds up flow predictions compared with conventional numerical 
simulators. Wen, Li, Azizzadenesheli, et al. (2022) further extended this model to U-FNO for superior 
accuracy, speed, and data efficiency by combining U-Net architecture and FNO. The physics informed 
machine learning (PIML) framework has also been applied to CO2 sequestration modelling and reservoir 
engineering problems (Shokouhi et al. 2021, Yan et al. 2021, Nagao, Datta-Gupta, et al. 2023). Nagao, 
Datta-Gupta, et al. (2023) applied Physics Informed Neural Network (PINN) model for identifying reservoir 
connectivity and predicting production rate from historical well data such as injection/production and 
pressure data. Despite the widespread use of machine learning-based methods for CO2 sequestration 
problems in recent years, it has seen limited range of applicability, for example, two phase black oil type 
problem in 2D or simple 3D reservoir cases(Onishi et al. 2021). The challenge here is to develop a scalable 
workflow for field applications, which can properly handle associated complexities and computational 
burden in efficient manner.  

In this study, we propose a deep learning-based workflow for data assimilation and CO2 plume 
visualization from available monitoring data, such as the injector bottom-hole pressure (BHP), the behind-
casing distributed pressure data at a monitoring well, and DTS data along wells. This workflow was 
originally proposed by Onishi et al. (2021) for unconventional reservoir application and extended to adapt 
to applications of CO2 sequestration (Nagao 2022, Nagao et al. 2022, Nagao, Yao, et al. 2023). In this 
study, DTOF maps are used for input and output of variational autoencoder (VAE) instead of CO2 onset 
time maps which are used in the previous work. The use of DTOF can significantly reduce the 
computational time of training data generation because DTOF maps can be generated by FMM without 
simulations and in just a few seconds. In contrast, CO2 onset time map is created based on full-physics 
numerical simulations. Furthermore, we applied an optimal coarsening of geologic model to reduce the 
computational time of forward simulations, which significantly reduces the training data generation cost. 
The effectiveness and robustness of the proposed workflow will be demonstrated using the application to a 
large-scale CO2 storage test site.   

Methodology 

In this section, we introduce the proposed deep learning-based history matching workflow. We consider 
the situation where some monitoring data is available in the CO2 sequestration sites such as temperature 
and pressure measurements at wellbores.  

First, we develop a data-driven neural network model to predict the subsurface pressure front propagation 
images in terms of DTOF given the monitoring data while considering the geological and fluid model 
uncertainties (Figure 1). Most of the existing machine learning-based proxy models predicts snapshots of 
pressure and saturation distribution in the reservoirs for all timesteps. Due to the high dimensionality of the 
reservoir model, the spatio and temporal distribution of pressure and saturation consumes extremely large 
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memory, which makes large-scale field application infeasible. Instead of storing pressure and saturation 
maps of every timestep, a DTOF map compresses snapshots of multiple pressure distribution images into a 
single image representing pressure front propagation (Sethian 1999, Datta-Gupta et al. 2011). Furthermore, 
DTOF images can be provided without running numerical simulation. One of the drawbacks of using 
pressure and saturation as outputs of proxy models is the computational cost for training data generation. It 
is required to run hundreds of full-physics numerical simulation for obtaining pressure and saturation 
images for all timesteps. For CO2 storage applications, non-isothermal and compositional simulations 
should be used to properly consider thermal effect and multi-component fluid behavior accurately. In such 
a case, the computational cost of numerical simulation becomes very expensive. However, DTOF images 
are calculated solely based on geologic properties and fluid properties at initial condition, and it can be 
calculated very efficiently using FMM. Use of DTOF significantly reduces the dimension of the problem 
and simplify the neural network architecture. As a result, it considerably enhances the efficiency of the 
whole workflow, enabling large-scale field application efficiently.   

  

 

Figure 1. Proposed machine learning model for predicting DTOF images. 

 

Next, we utilize the predicted DTOF image based on field monitoring data as a representative subsurface 
image for history matching purpose. Within the ensemble of training dataset, we select several nearest 
neighbor samples that have similar DTOF images with the predicted DTOF image, and these samples are 
considered as history matched reservoir models. Detailed workflow of the nearest neighbor model selection 
is discussed later in this section.  

 

Neural network training and prediction of DTOF images 
In our study, the VAE is used to compress the high dimensional DTOF images into low dimensional latent 
space. VAE was originally proposed by Kingma and Welling (2013), and the idea is to combine the concept 
from classical autoencoder and Bayesian inference. A classical autoencoder takes an image data as input, 
maps it to low dimensional latent space, and then decodes it back to original image dimension. Such 
classical autoencoder is built for the purpose of dimensionality reduction, and it sometimes does not lead 
to particularly useful or nicely structured latent space representation especially for highly nonlinear 
problems. On the other hand, the VAE augments autoencoders with a statistical process, forcing them to 
learn continuous and highly structured latent spaces. Figure 2 shows the architecture of VAE. The input 
images are compressed into a fixed low dimensional latent space, providing two variables: mean and 
variance. VAE then calculates the latent variables by sampling from the normal distribution based on the 
given mean and variance. Then, it is decoded back to original image dimension. The sampling process 
forces the latent space to encode meaningful representation everywhere. This specific feature of VAE is 
very useful to properly account for the uncertainty of the predicted images. In our applications, the trained 
neural network can provide multiple predictions of DTOF image while considering the uncertainties 
associated with pressure front propagation. The VAE has the following loss function: 
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where, 𝑥' is the normalized pixel of DTOF images, 𝑥&' is the reconstructed pixel of the images, 𝜇( is the 
mean and 𝜎() is the variance of the latent variables, 𝑁* is the number of the image dimension and 𝑁+ is the 
latent space dimension. The first term is reconstruction loss that has same formula with classical 
autoencoder. The second term is called Kullback-Leibler (KL) divergence that enforce the distribution close 
to standard normal distribution, which has mean of 0 and variance of 1, to enforce continuous latent space 
representation. 

 

Figure 2. Schematic of the VAE architecture 

 
The steps of the proposed deep learning-based workflow are given below and in Figure 3. 

• The first step of the workflow is data generation for the neural network training. A sensitivity 
analysis is conducted to identify the influential parameters on the observed data, such as pressure 
and temperature measurements at wells. Next, the selected key uncertain parameters are sampled 
using Latin Hypercube sampling algorithm to generate an ensemble of reservoir model realizations 
to cover the uncertainty space. In this study, EclipseTM commercial reservoir simulator is used to 
run simulations of the created ensemble and generate simulated monitoring data. The DTOF images 
are efficiently calculated by FMM without running simulations. 

• The second step is the neural network training using the generated training dataset. The collected 
samples are divided into training, validation and testing dataset. The proposed neural network 
architecture is composed of two elements; CNN-based VAE to compress the high dimensional 
DTOF images into low dimensional latent variables and regression model to estimate the 
compressed latent variables from the available monitoring data such as DTS and pressure 
measurements. In the regression model, 2D CNN is used for image data with spatial information 
such as DTS data, and feed-forward neural networks is used for point measurements such as 
pressure measurements. These two parts of the neural network (VAE and regression model) can be 
combined and trained together. The loss function for the proposed neural network for each sample 
can be written as: 
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where, 𝜇(  is the mean and 𝜎() is the variance of the latent variables calculated from the encoder 
network, �̂�( and 𝜎&() are the predicted values from the regression model, 𝑁+ is the latent space 
dimension. The input data (DTOF, DTS and pressure measurements) are scaled using min-max 
scaler for neural network to train properly. 

• The trained neural network is then used for the prediction of DTOF images given monitoring data. 
The field monitoring measurements are fed into the trained regression model, and the latent 
variables are predicted. Then, the trained decoder network maps the latent variables back to the 
original image dimension, which is the predicted DTOF map. Since the VAE is used in this study, 
multiple images can be provided considering the uncertainties of the predicted images. 

 

Figure 3. Workflow of the proposed deep learning-based subsurface image prediction 
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History matching using trained model 
Once the neural network is successfully trained, it can be used for reservoir model calibration and prediction 
of the CO2 plume migration. One of useful features of VAE latent space is that the distance between the 
sample points represents the dissimilarity of those samples. It means that if two samples are far from each 
other, those two samples have very different DTOF images. In contrast, if two samples are close to each 
other, those two samples have very similar DTOF images. Figure 4 shows the illustration of the VAE latent 
space representation. The generated training samples of DTOF images are compressed into the VAE latent 
space during the neural network training. The light blue symbol represents the training data samples mapped 
into the VAE latent space. For the reservoir model calibration in this framework, we first estimate the target 
latent variable using the trained regression model with given field monitoring data, such as well pressure 
and DTS measurements. In Figure 4, the target latent variable is expressed as a black cross. Since the 
distance becomes a measurement of dissimilarity in the VAE latent space, nearest neighbor samples to the 
target point have similar DTOF maps to the predicted DTOF map based on field monitoring measurements. 
The DTOF maps can be considered as a representative subsurface image that takes account of geologic 
model, fluid properties, and well location. Thus, the nearest neighbor samples can be considered as 
ensemble of calibrated reservoir models that captures the field monitoring data. By running forward 
simulations of the selected nearest neighbor models, we can predict the future CO2 plume migration.  

 

Figure 4. Illustration of the latent space representation for model selection and reservoir calibration 

 

Field Application 
In this section, the proposed deep learning-based workflow is applied to a large-scale CO2 sequestration 
project to show its effectiveness and versatility. 
 
Project overview and model description 
The Illinois Basin – Decatur Project (IBDP) is headed by the Midwest Geological Sequestration Consortium 
(MGSC), a federally funded regional partnership through the U. S. Department of Energy’s National Energy 
Technology Laboratory (DOE). MGSC collaborates with Archer Daniels Midland (ADM) Company, 
Schlumberger Carbon Services, Trimeric, and other subcontractors, and the goal of this project is to inject 
1 million metric tons of CO2 into a saline aquifer in Decatur, Illinois (Figure 5). There is an injector (CCS1) 
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and a monitoring well (VW1) in this field. CO2 injection operation commenced in November 2011, and it 
continued for three years at an approximate rate of 1,000 metric tons per day. This is one of the earliest 
large-scale CO2 storage project within the seven DOE Regional Carbon Sequestration Partnership. The 
second project called Industrial Carbon Capture and Storage (ICCS) is started from 2017 at the same site, 
and new injection well and monitoring well (CC2 and VW2) are completed for this project. Note that these 
wells are not included in the scope of this paper. 

 

Figure 5. Location and description of the IBDP site (Wade Zaluski 2021). 

The static model was built based on seismic survey, geophysical logs, and core analysis (Wade Zaluski 
2021). As shown in Figure 6, the static model composed of eleven zones, and the main injection zone is 
Mt. Simon A-lower. As observed data, behind casing pressure at six different depth (WB1 to WB6) along 
the monitoring well, bottom hole pressure at the injector, and DTS data along the injector are available, 
which are shown in Figure 7. Since the injected CO2 temperature is higher than the temperature of the 
formation, an increase of temperature is observed at the injection zone in the DTS data. 

 

Figure 6. Description of geological zones of IBDP (Wade Zaluski 2021). 
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Figure 7. Available monitoring data for the IBDP site. 

A part of the static model covering 9.7 miles x 9.3 miles are extracted as the dynamic reservoir model which 
has 126x125x110 dimension, in total 1.73 million cells. The lateral grid size is same as the static model and 
the smallest grid size around wells is 125 ft x 125 ft. The initial pressure distribution is from 2159 [psi] at 
the top layer to 4006 [psi] at the bottom layer. The permeability distribution is shown in Figure 8, which 
ranges from 1e-5 to 1683.9 [mD], and it has high heterogeneity. As stated, the main target zone for CO2 
injection is Mt. Simon A-lower (middle layers in dynamic model) which has relatively high permeability. 
The injection schedule is shown in Figure 9, which is used as a constraint of the injector during the 
simulation. ECLIPSE 300 (compositional model) with CO2STORE module (three components: CO2, H2O, 
and NaCL) and thermal option is used. In this application, the proposed workflow is applied to visualize 
DTOF map and calibrate the reservoir model using the latent space representation of the trained neural 
network model.  

 
 

Figure 8. IBDP dynamic model (Permeability). 
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Figure 9. Injection schedule history. 

Upscaling reservoir model to accelerate forward simulation and training  
Since it is required to properly consider non-isothermal and multicomponent fluid flow for CO2 storage 
applications, and the IBDP model is a large-scale reservoir model, the simulation consumes significant 
computational resources. A single simulation requires approximately 600 hours for four years simulation. 
In this case, it is not feasible to run hundreds of simulations for training data generation. To mitigate the 
expensive simulation costs, we have implemented a model upscaling strategy and the injection schedule 
averaging to reduce simulation timestep. The details of the model coarsening strategy is illustrated in Figure 
10. Our approach incorporates techniques of areal upscaling and vertical upscaling.  
 

 
Figure 10. Illustration of upscaling methods and injection schedule averaging. 

The IBDP model has a tartan grid, characterized by finer gridding near wells and coarser gridding in areas 
distant from wells. In the areal upscaling process, varying coarsening schemes are applied across different 
regions of the reservoir: 2x2 coarsening is utilized in areas near the wells, which covers the entire CO2 
plume at the end of the operation. For the outside four regions, more aggressive 5x5 coarsening is adopted. 
To prevent the additional non-neighbor connections, 5x2 or 2x5 coarsening are implemented in the 
remaining four areas as shown in Figure 10. Additionally, IBDP model incorporates an infinite-acting 
boundary condition by assigning large pore volume multiplier to the boundary cells. To maintain the 
boundary, areal upscaling is applied excluding these boundary cells. In the vertical upscaling process, the 
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injection zone is kept as its original scale, while the zones above and below have aggressive upscaling 
scheme. Specifically, the bottom zone has the most aggressive upscaling due to its negligible impact on 
pressure behavior, as it does not have pressure gauge at this depth along the monitoring well and is separated 
from the middle zone by baffles. DTOF map can be generated by FMM without numerical simulations and 
the numerical simulations are needed only for generating monitoring data such as bottom hole pressure and 
DTS data. Since it is easier to maintain the accurate monitoring data than to maintain accurate grid pressure 
or saturation for all timesteps after coarsening, we can perform such active coarsening scheme. 
In addition to upscaling, the injection schedule has been averaged. Originally, the schedule was set to report 
on a daily basis. This high reporting frequency prevented larger time steps, and it increased the 
computational cost. We reduced the number of timesteps by averaging the injection schedule. The averaged 
injection schedule is shown in Figure 10 and closely resembles the original schedule.  
Figure 11 shows the comparison of simulated well response data between the fine and upscaled model. It is 
confirmed that the upscaled model provide reasonable accuracy in terms of well pressure and DTS data. 
The upscaled model significantly reduces the computational time. Running the original fine-scale model 
on an Intel® Xeon® Gold 6226R CPU @ 2.90 GHz with 32 cores requires approximately 18 hours, which 
equates to roughly 600 hours on a single core. In contrast, the upscaled model requires only 7.1 hours under 
identical conditions with a single core, demonstrating a substantial reduction in simulation time. 
 

 
Figure 11. Comparison of well responses between original fine-scale model and coarse-scale models. 

 
Parameter selection and sensitivity analysis 
In this section, we describe the workflow of the parameter selection for training data generation. We first 
implement sensitivity analysis to identify the uncertain parameters that have large influence on the observed 
data, including pressure and DTS data. The regional definition is used for the geological property 
calibration, such as transmissibility and pore volume. Based on the underlying geological feature (Figure 
6), the IBDP reservoir model is divided into four regions as shown in Figure 12. The pore volume multiplier 
and transmissibility multiplier for each region are included in the sensitivity analysis. In addition to that, 
rock compressibility, rock heat capacity, and thermal conductivity for the entire reservoir are included as 
parameters for sensitivity analysis. In this study, multiphase flow parameters such as end points of relative 
permeability curve or capillary pressure are not included in parameters for sensitivity analysis, although 
these parameters might be influential to the observed data. The investigation of these parameters are left 
for future work. 
 



CCUS 4014874  12 
 

 
Figure 12. IBDP region definition. 

Table 1 shows the list of parameters used for sensitivity analysis and their respective assigned range. One-
variable-at-a-time design is used in this study. Figure 13 shows the tornado charts created for each objective 
function (DTS data along injector, BHP of injector, and behind casing pressure of monitoring well). In 
Figure 13, the base case is indicated as vertical line whose horizontal axis is 0, and the differences of each 
objective function from base case is indicated as bar along horizontal axis. The difference generated by 
changing each parameter to ‘Low’ is indicated as blue, and the difference generated by changing each 
parameter to ‘High’ is indicated as red. Based on the results of sensitivity analysis, the six highly sensitive 
parameters are detected, including MULTZ1, MLTPV3, MULTX3, MULTZ3, MLTPV4, and THCON. In 
the training data generation, these detected parameters are changed within the specified uncertainty range, 
respectively, and 500 training data samples are generated. 
 

Table 1. List of parameters used for sensitivity analysis and their respective assigned bounds. 

Properties Parameters Description Low Base High 

Region Pore Volume 
Multipliers 

MLTPV1 Region 1 PV Multiplier 0.7 1.0 1.3 

MLTPV2 Region 2 PV Multiplier 0.7 1.0 1.3 

MLTPV3 Region 3 PV Multiplier 0.7 1.0 1.3 

MLTPV4 Region 4 PV Multiplier 0.7 1.0 1.3 

Region TRANX Multipliers 

MULTX1 Region 1 TRANX Multiplier 0.5 1.0 2.0 

MULTX2 Region 2 TRANX Multiplier 0.5 1.0 2.0 

MULTX3 Region 3 TRANX Multiplier 0.5 1.0 2.0 

MULTX4 Region 4 TRANX Multiplier 0.5 1.0 2.0 

Region TRANZ Multipliers 

MULTZ1 Region 1 TRANZ Multiplier 0.1 0.5 1.0 

MULTZ2 Region 2 TRANZ Multiplier 0.1 0.5 1.0 

MULTZ3 Region 3 TRANZ Multiplier 0.1 0.5 1.0 

MULTZ4 Region 4 TRANZ Multiplier 0.1 0.5 1.0 

Rock Compressibility ROCK Rock Compressibility (psi-1) 2.7E-06 3.2E-06 3.7E-06 

Rock Heat Capacity HEATCR Rock Volumetric Heat 
Capacity (Btu/ft3/deg-R) 0.3 0.5 0.7 

Thermal Conductivity THCONR 
Combined rock and fluid 

thermal conductivity 
(Btu/ft/day/deg-R) 

1.0 2.0 3.0 
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Figure 13. Results of sensitivity analysis. 

Dataset generation and neural network training  
In this section, we describe the workflow of the dataset generation and neural network training. The Latin 
hypercube sampling was applied to the selected six parameters during the sensitivity analysis, and 500 
realizations are generated for neural network training. Using the 500 realizations, the DTOF maps are 
generated using FMM. Fine-scale reservoir model is used for the DTOF calculation, since it does not require 
numerical simulation in FMM. The numerical simulations of upscaled models were performed using a 
commercial simulator. EclipseTM  (E300) (compositional simulator) with CO2STORE module is used for 
the simulation. After each simulation, the BHP of injector, the behind-casing pressure along the monitoring 
well, and the DTS data along injector are saved as training data. Figure 14 and Figure 15 show examples 
of generated training data. It is found that observed BHP/behind-casing pressure are covered by the 
generated pressure responses properly.  Since the three pressure gages along the monitoring well, WB4, 
WB5, and WB6 are placed outside of the injection zone, these pressure data are excluded from the neural 
network training process. The generated 500 samples are divided into training (350), validation (75) and 
testing (75) samples. The neural network is built to predict DTOF map from the well pressure response and 
DTS data. Figure 16 describes the overall architecture of neural network models. CNN-based VAE is used 
for image (DTOF map) compression, and CNN (for DTS data) and feed-forward neural network (for well 
pressure response) are used as regression model.  

 

Figure 14. Examples of generated training data (DTOF maps and DTS data). 
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Figure 15. Examples of generated training data (pressure responses). 

For the VAE part, 3D CNNs are used because DTOF map is 3D image, and 2D CNNs are used for the DTS 
data because it is a 2D image. The training condition of neural network is summarized in  

Table 2 The runtime for the training was approximately 5 hours using GPU in Google Collaboratory. 
Figure 16 also shows the training performance. The blue curve is the loss function of training dataset, and 
the orange curve is the loss function of validation dataset. The steady reduction trend of loss function can 
be observed in both training and validation datasets, indicating that the neural network training is successful. 
In this procedure, Tensorflow library in Python was used.  

 

Figure 16. Overall architectures of neural networks for training and training performance. 

Table 2. Neural network training conditions. 
Conditions Value 
Batch size 200 

Maximum number of epochs 2000 
Patience 500 

Optimizer 
 

Initial learning rate 

Adaptive Moment Estimation (ADAM) 
(Kingma and Ba 2014) 

0.0001 
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Blind test of Diffusive-Time-of-Flight 
After the neural network training, the prediction performance of DTOF maps given pressure response and 
DTS data was verified using the test samples. Figure 17 shows the schematic of the neural network 
architecture for prediction of the DTOF maps. The DTS data and well pressure responses are fed into the 
trained regression model (trained CNN and trained feed forward NN), and it predicts the DTOF maps. The 
three randomly selected test samples out of 75 are shown in Figure 18. Since the characteristics of VAE 
enables to provide multiple predicted images considering the uncertainty of predicted images, three 
predicted images for each sample are provided in Figure 18. The prediction accuracy of the trained neural 
network model is validated, while properly considering the uncertainties of the predicted images. This blind 
test reveals that the trained neural network can successfully provide the DTOF map based on the monitored 
pressure responses at wells and DTS data along the injector. 

 

Figure 17. Neural network architecture: prediction 

 

 

Figure 18. Prediction of DTOF map in blind test. 

 

Reservoir model calibration and prediction of CO2 plume propagation 
After validating the prediction accuracy of the trained neural network, the observed BHP of injector, 
behind-casing pressure of monitoring well, and DTS data along injector are fed into the trained neural 
network. The regression part of the neural network model provides the low dimensional latent variables 
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corresponding to the field DTOF map. By selecting several training and validation samples having close 
latent variables to the estimated target latent variables based on field monitoring data, we can obtain an 
ensemble of calibrated reservoir models. These models can be considered as history matched reservoir 
models. Figure 19 shows the comparison of the well pressure responses and DTS data along the injector 
between prior ensemble (500 samples), posterior ensemble (10 nearest neighbors), and observed data. The 
history matching is implemented with 2 years historical data, and the following 2 years is considered as 
prediction period. The first observation is that posterior ensemble improved the matching performance with 
observed data over the prior ensembles for both history matching period and prediction period. The second 
observation is that the uncertainty of ensemble is reduced after history matching as expected. For the DTS 
data, reasonable agreement is confirmed after the history matching process from cross plot in Figure 19. 
Overall, in all observed data, a reasonable matching performance is confirmed, which validates the ability 
of the proposed history matching workflow. Compared with the traditional history matching workflow such 
as genetic algorithms, the selection of posterior models can be done rapidly (model selection can be done 
by a few seconds) in the proposed deep learning-based workflow, and significant acceleration is obtained 
while maintaining reasonable accuracy. 

 

Figure 19. Comparison of pressure responses and DTS data between calibrated models and observed data. 

 

Finally, CO2 saturation evolution is predicted by running the numerical simulation of these calibrated 
reservoir models. The simulation results of two nearest neighbor models are shown in Figure 20. In this 
simulation, CO2 is injected from 2011-11-1 to 2014-11-27, and the behavior of CO2 plume evolution until 
2015-12-1 (1 year of post-injection period) is simulated. Figure 20 shows the CO2 saturation evolution 
with respect to time.  The predicted CO2 plume propagation images can be used for CO2 leakage analysis 
and for optimizing the CO2 sequestration operation.  
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Figure 20. CO2 evolution with time by calibrated models. 

Conclusions 

• An efficient deep learning-based workflow for data assimilation has been developed for CO2 
sequestration operation. Diffusive time of flight (DTOF) map is used for input and output of 
variational autoencoder (VAE) as a representative reservoir image. The use of DTOF provides two 
benefits: 1. Dimensionality reduction compared with snapshots of pressure or saturation images at 
different timesteps, 2. Computational time is reduced because the DTOF images can be efficiently 
calculated using FMM without numerical simulation. These benefits improve the efficiency of the 
neural network training and reduce the computational cost for the training data generation. 

• The proposed workflow has been applied to a large-scale CO2 sequestration project, the Illinois Basin 
– Decatur Project (IBDP). The DTOF map was predicted from sparse observed data: the injector 
bottom-hole pressure, the behind-casing pressure at the monitoring well, and DTS data along the 
injector. Also, the characteristic of the VAE latent space enables us to select multiple calibrated 
reservoir models, and CO2 plume evolution can be predicted by running simulations of the selected 
models. 

• In the field application, the main challenge was the computational time of the multi-component non-
isothermal simulation (600 hours with a single core). To resolve this challenge, upscaling of the 
geologic model is applied, which properly considers the tradeoff between the model accuracy and 
computational efficiency. Because the DTOF map can be generated without running numerical 
simulation, the DTOF maps are generated using original fine-scale models. As a result, the 
computational time of single forward simulation was reduced from 600 hours to 7 hours, which 
provides significant acceleration of training data generation. 

• To accelerate the workflow further, it is promising to incorporate Fast Marching Method (FMM)-
based rapid simulation for generating training data generation as potential future work. In FMM-
based rapid simulation, the 1D spatial coordinate determined based on DTOF contour is used for flow 
simulation. 
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