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Abstract 

Intensified climate mitigation efforts have highlighted Carbon Capture and Storage (CCS) as crucial for 

reducing CO2 emissions. The efficacy of CO2 storage in saline aquifers depends on the injectivity index. 

Although numerical simulations offer predictive insights, their high computational demands hinder quick 

basin-wide assessment. This study aims to address this challenge by developing an injectivity proxy 

model to expedite the identification of optimal injection sites. A CO2 injection forecast set a base case for 

sensitivity analysis of injectivity parameters, including CO2 viscosity, permeability-thickness product 

(kh), heterogeneity as Dykstra-Parson’s coefficient (VDP), slope of the fractional flow curve (df/ds), 

injection rate, bottomhole pressure and permeability anisotropy. The dominant parameters were 

parameterized to generate the proxy for basin mapping. Sensitivity analysis revealed the most sensitive 

parameters governing CO2 injectivity to be kh, VDP, CO2 viscosity and df/ds. High kh coupled with 

VDP values above 0.52 resulted in larger plume extents and increased CO2 saturation. Conversely, higher 

CO2 viscosity produced lower CO2 saturations and vice versa. Larger plume areas with less favorable 

CO2 movement were observed for higher df/ds values. This was characterized by channeling of CO2, 

leading to uneven displacement and flow patterns within the reservoir. The least sensitive parameters 

were injection rate and bottomhole pressure, both of which are contingent upon the aforementioned 

highly-sensitive parameters and permeability anisotropy. The San Juan basin CO2 injectivity map 

generated from the proxy, delineates zones of high injectivity potential and that of lower injectivity 

prospects. The map provides a clear guidance on specific locations within the basin, optimum for placing 

CO2 injection wells for effective climate action due to their capacity to safely inject and sequester 

substantial amounts of CO2. This approach enables swift identification of promising well locations for 

injection, circumventing the need for time-consuming, comprehensive simulations. By streamlining site-

selection processes, injectivity mapping accelerates preliminary evaluations, consequently enhancing the 

efficacy and cost-efficiency of CCS projects. This research not only advances the practical 
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implementation of CCS in the San Juan Basin but also provides a transferable framework for rapid, large-

scale assessments of CO2 injection in saline aquifers worldwide. 

Introduction 

Within Earth's dynamic biosphere, the carbon cycle plays a pivotal role, balancing the exchange of carbon 

dioxide (CO2) between the planet's flora and fauna (Prajapati et al., 2023). This equilibrium has been 

markedly disrupted since the onset of the industrial era, leading to profound implications for global 

climate patterns, land use changes, diminished nutritional quality of certain crops, and biodiversity loss 

(Yang et al., 2024). The imperative to mitigate these trends has led to the advocacy for "net-zero" CO2 

emissions. Achieving this equilibrium necessitates integrating significant reductions in greenhouse gas 

emissions with enhanced carbon sequestration efforts (Barbhuiya et al., 2024). Among various geological 

formations, saline aquifers stand out for their potential to securely store vast amounts of CO2 due to their 

large capacity, widespread occurrence and improved safety profile due to depth and isolation of these 

formations (Rasool et al., 2023). The feasibility and success of CO2 sequestration projects in these 

formations hinges significantly on the injectivity index, a measure of the ease with which CO2 is injected 

into the subsurface environment and the potential challenges that might arise during the injection process 

(Darkwah-Owusu et al., 2024). The injectivity index not only informs the design and operation of 

injection wells, but also plays a pivotal role in ensuring the long-term integrity of CCS projects (Mishra et 

al., 2017). Evaluation of CO2 storage projects necessitates thorough site characterization, reservoir 

modeling, and development of monitoring strategies (Ma et al., 2024). During preliminary phases, the 

requisite depth of information for project evaluation may not be readily accessible to project developers; 

even when they are readily accessible, computational time and demands are a barrier. Furthermore, 

regulatory bodies tasked with scrutinizing detailed technical reports of projects may lean towards simpler 

analytical tools that provide a broad overview of the expected outcomes (Chen et al., 2022). 

Consequently, there is a need for the development of dependable screening models that can offer 

preliminary evaluations and aid in decision-making as addressed by this research. This model stands out 

for its minimal data requirements while maintaining a high level of accuracy compared to more complex 

simulation outcomes.  

Methodology 

This study focuses on the San Juan Basin in northwestern New Mexico, utilizing a 3D geological model 

covering 40x40 miles and extending 10,471 feet in depth. The model, subdivided into 806,850 grid cells 

and eight geological formations, highlights the Entrada Formation as its focal point. History matching 

was performed to refine the model before establishing a base case CO₂ injection scenario. A 30-year 

injection strategy was simulated using the SJB well to inject a 100% CO₂ stream with a surface rate limit 

of 18 MMcf/day and a bottomhole pressure of 4700 psi. Sensitivity analysis was conducted using Latin-

hypercube sampling to evaluate the impact of key parameters, including permeability-thickness product 

(kh), permeability anisotropy, heterogeneity (VDP), relative permeability, injection rate, bottomhole 

pressure (BHP) and CO2 viscosity with the data shown in Table 1. While the well locations provide the 

kh, Equation 1 calculated the slope of the fractional flow curve, derived from Corey exponents for gas 

and water which represent the relative permeability relationship during the movement of CO₂ in the 

presence of brine. Several well locations were selected within the Entrada sandstone layer based on 

distinct hydraulic flow units, including a base case scenario at the existing SJB CO₂ injection well. Up to 

ten locations, summarized in Table 2, were analyzed to evaluate injectivity across the formation. For each 

site, the kh is deduced and VDP computed with Equation 2. Relative permeability, modeled using Corey 

exponents, was assigned a range of 1 to 6 as per literature (Dria et al., 1993), with a base case value of 3 

for both gas and water, reflecting laboratory-derived data. The viscosity of supercritical CO₂ was varied 

between 0.01 and 0.1 cP, consistent with typical supercritical CO₂ conditions (Prasad et al., 2023). 

Permeability anisotropy was parameterized within 0.1 to 0.6 (Clavaud et al., 2008). Operational 



CCUS 4180432  3 
 

parameters, such as injection rates, were sampled from 10–25 MMSCF/day, while BHP was adjusted 

between 4,500 and 4,900 psi to maintain a fracture pressure gradient of 0.62 psi/ft, tailored to the basin. 

 

 

Figure 1. A summarized flowchart of the workflow designed for the study. 

 

After identifying the most impactful parameters from sensitivity analysis displayed in Figure 3 – well 

location, df/ds, CO2 viscosity, permeability anisotropy – 200 new numerical simulation runs were 

performed to obtain a dataset which was used in the proxy formulation. It adopts a machine learning 

approach based on Ridge regression to predict CO₂ injectivity due to its ability to handle multi-

collinearity and stabilize solutions when dealing with highly correlated features, which are prevalent in 

geological datasets (Narayan et al., 2024). To prepare the data, the target is log-transformed to stabilize 

variance, and custom features are engineered to maintain consistency with the injectivity index’s unit in 

MMcf/psi-day. The data is then split into training, testing, and blind test sets. To capture nonlinear 

relationships, polynomial transformations of degree 2 are applied, and features are standardized. A Ridge 

regression model is trained and optimized through cross-validation, selecting the best hyper-parameter to 

achieve high accuracy. The model's performance is evaluated on both test and blind datasets, using 

metrics such as R², mean squared error (MSE) and parity plots as seen in Figure 4 and Figure 5. The 

model is then implemented on the San Juan subsurface model to produce the injectivity map. 

Results and Discussion 

The study highlights how CO₂ plume dynamics are shaped by key reservoir properties fluid properties. 

Plumes were larger and more irregular in regions with high kh and VDP, where CO₂ followed preferential 

flow paths, resulting in channeling and fingering. In contrast, low kh areas produced smaller, more stable 

plumes with uniform distribution, enhancing containment security. Steeper df/ds slopes led to aggressive 

brine displacement, increasing injectivity but causing irregular plumes, while gentler slopes resulted in 

stable CO₂ fronts. Similarly, low-viscosity CO₂ increased mobility, enabling rapid spread and uneven 

saturation, while high viscosity produced more controlled plumes, especially in homogeneous zones. 

Permeability anisotropy emerged as a moderate but impactful factor, with high anisotropy achieving 

lateral spread and low anisotropy balancing horizontal and vertical flow. Injection rate and BHP had 

minimal direct effects on plume dynamics as they are largely dictated by properties like kh, viscosity and 

anisotropy, thus suppressing the effect of the operational parameters. The Ridge regression model 

demonstrates a robust predictive capability for CO₂ injectivity, as evidenced by its equation and 

performance metrics. The model as displayed in Equation 4 emphasizes the dominant contribution of kh 

with the highest coefficient (0.0640), affirming its critical influence on injectivity while interaction terms 

underscore the complex interplay of key parameters in shaping injectivity dynamics. The model achieved 

near-perfect performance on the training and testing datasets, with R2 scores of 0.999958 and 0.999922, 

respectively, and impressively low MSE values (8.22×10−7 for training and 1.15×10−6 for testing). These 

metrics indicate the model’s ability to capture the underlying patterns in the data with accuracy. On the 
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blind test dataset, the model retains strong predictive capability, achieving an R2 score of 0.875 and an 

MSE of 5.21×10−5. These results confirm the model’s ability to generalize well to unseen data, making it 

a reliable tool for practical applications in CO₂ injection planning and optimization.  

 

 

Figure 2. Average Injectivity map for the Entrada formation. 

 

The average injectivity map in Figure 2 illustrates the spatial variability of CO₂ injectivity across the five 

layers of the Entrada formation, with values ranging from 0.53 to 0.85 MMcf/psi-day. Areas with high 

injectivity, represented by warmer colors, indicate zones of favorable reservoir properties such as higher 

kh values and moderate VDP values. These regions are well-suited for CO₂ injection, as they facilitate 

efficient fluid flow and controlled plume development. Conversely, cooler-colored areas highlight regions 

of lower injectivity, which may correspond to tighter formations with increased variability in reservoir 

properties. These zones require tailored injection strategies, such as controlled injection rates or adjusted 

bottomhole pressures, to prevent issues like pressure buildup, uncontrolled plume spread or inefficient 

CO₂ storage. Overall, the injectivity map highlights the variability in reservoir quality within the Entrada 

formation. High-injectivity zones offer opportunities for efficient CO₂ injection, while lower-injectivity 

areas present challenges that must be addressed through tailored injection rates or pressure adjustments. 

This map enables the design of more efficient and secure injection strategies.  

Conclusions 

This study highlights the importance of reservoir and fluid properties in determining CO₂ injectivity, as 

well as the size and stability of CO₂ plumes. The Ridge regression model demonstrated exceptional 

predictive accuracy across training, testing, and blind datasets, confirming its reliability for injectivity 

estimation. Injectivity maps of the Entrada formation revealed substantial spatial variability, with high-

injectivity zones offering opportunities for efficient injection and lower-injectivity areas requiring tailored 

strategies. These findings provide a practical framework for optimizing CO₂ storage in complex 

reservoirs. 
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Appendix 

Table 1. Summary of input data for sensitivity analysis. 

Parameter Unit Base Minimum Maximum 

Well Location - 1 1 10 

Corey Gas - 3 1 6 

Corey Water - 3 1 6 

Viscosity cP 0.05 0.01 0.1 

Anisotropy - 0.1 0.1 0.6 

Injection Rate MMscf/day 18 10 25 

BHP psi 4700 4500 4900 

 

Table 2. Permeability-thickness product and heterogeneity at sampled well locations for location sensitivity analysis. 

X  Y  kh  VDP  

85  72  1813.21  0.53  

27  143  1536.04  0.374  

80  144  86.15  0.45  

132  142  14.09  0.52  

24  108  440.88  0.55  

66  107  297.16  0.61  

133  109  5.84  0.351  

135  69  17.96  0.45  

78  79  6300.63  0.58  

124  30  290.05  0.57  

 

Equation 1. Fractional flow of gas (CO2) to formation brine (Mishra and Ravi Ganesh, 2021). 

𝑓𝑔 =

𝑘𝑟𝑔

𝜇𝑔

𝑘𝑟𝑔

𝜇𝑔
+

𝑘𝑟𝑤
𝜇𝑤

 

 

Equation 2. Permeability heterogeneity calculation for the log-normal permeability distribution (Mishra and Ravi Ganesh, 2021). 

𝑉𝐷𝑃 =
𝑘50 − 𝑘84.1

𝑘84.1
 

 

Equation 3. Calculating CO2 Injectivity (Mishra and Ravi Ganesh, 2021). 

𝐼𝑛𝑗𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝐼𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒

𝐵𝑜𝑡𝑡𝑜𝑚ℎ𝑜𝑙𝑒 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 − 𝑅𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒
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The Ridge Regression Algorithm for CO2 Injectivity Prediction 

Input: 

 Training set, S = {(X1, y1), (X2, y2), …, (Xm, ym)} 

 Polynomial degree, d = 2 

 Ridge regularization hyper-parameter, α 

 Log-transformed target, ylog = log(1+y) 

Process: 

 Constructing custom features 

CustomFeature1 = X4/X1 (kh/μCO2) 

CustomFeature2 = X2 (df/ds) 

CustomFeature3 = X3 (Anisotropy) 

CustomFeature5 = X5 (VDP) 

 Standardization, 𝑋 ̂= (X-μ)/σ 

 Initialize Ridge Regression Model 

𝑦̂𝑙𝑜𝑔 = 𝑎𝑟𝑔𝑚𝑖𝑛 ∑ (𝑦𝑙𝑜𝑔,𝑖 − 𝛽0 − ∑ 𝛽𝑗𝑋̂𝑗

𝑝

𝑗=1

)

2

+ 𝛼

𝑛

𝑖=1

∑ 𝛽𝑗
2

𝑝

𝑗=1

 

 Compute predicted log-values, ŷtest, log = Model (Ẋtest) 

 Reverse the log transformation, ŷtest = exp(ŷtest, log) – 1 

 Compute evaluation metrics 

𝑀𝑆𝐸 =  
1

𝑛
∑ (𝑦𝑡𝑒𝑠𝑡,𝑖 − 𝑦̂𝑡𝑒𝑠𝑡,𝑖)

2𝑛

𝑖=1
 

𝑅2 = 1 −
∑(𝑦𝑡𝑒𝑠𝑡 − 𝑦̂𝑡𝑒𝑠𝑡)2

∑(𝑦𝑡𝑒𝑠𝑡 − 𝑦̅)2
 

 Blind Test Evaluation and metrics calculation 

 Visualizations 

 Ridge Regression Equation Output 

𝑌 = 𝑒𝑥𝑝 (𝛽0 + ∑ 𝛽𝑗𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑗

𝑝

𝑗=1

) − 1 
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Figure 3. Relative impact of each variable on CO2 injectivity. 

 

 

Figure 4. Actual vs. predicted test result for general data pool. 
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Figure 5. Parity plot of actual vs. predicted for blind data set. 

 

Equation 4. Ridge Model of CO2 Injectivity. 

𝑌 = exp [0.0814 + (0.064
𝑋4

𝑋1

) + (0.0345𝑋2) + (0.0583𝑋3) + (0.0038𝑋5) + (0.0612
𝑋4

2

𝑋1
2) + (−0.0216

𝑋4𝑋2

𝑋1

)

+ (−0.0833
𝑋4𝑋3

𝑋1

) + (0.0737
𝑋4𝑋5

𝑋1

) + (0.0085𝑋2
2) + (−0.0506𝑋2𝑋3) + (0.005𝑋2𝑋5)

+ (0.0163𝑋3
2) + (−0.0193𝑋3𝑋5) + (0.0034𝑋5

2)] − 1  

Where  

Y = CO2 Injectivity, MMcf/psi-day 

X1 = CO2 Viscosity, psi-day 

X2 = Slope of fractional flow curve, df/ds 

X3 = Permeability Anisotropy 

X4 = Permeability-thickness product (kh), cf 

X5 = Heterogeneity, VDP 


