
 
 
CCUS: 4186155 
 
Estimating CO2 Saturation in Subsurface Geologic Reservoirs Using 
Pre-stack Seismic Attributes and Machine Learning 
 
Papa Owusu*1, Rui Zhang1, 1. University of Louisiana at Lafayette.  
 
Copyright 2025, Carbon Capture, Utilization, and Storage conference (CCUS) DOI 10.15530/ccus-2025-4186155 
 
This paper was prepared for presentation at the Carbon Capture, Utilization, and Storage conference held in Houston, TX, 03-05 
March. 

The CCUS Technical Program Committee accepted this presentation on the basis of information contained in an abstract submitted 
by the author(s). The contents of this paper have not been reviewed by CCUS and CCUS does not warrant the accuracy, reliability, 
or timeliness of any information herein. All information is the responsibility of, and, is subject to corrections by the author(s). Any 
person or entity that relies on any information obtained from this paper does so at their own risk. The information herein does not 
necessarily reflect any position of CCUS. Any reproduction, distribution, or storage of any part of this paper by anyone other than 
the author without the written consent of CCUS is prohibited.  

 

Abstract 

Integrating well-logs and time-lapse seismic data to estimate spatial CO2 saturation in reservoirs is 
essential to geological carbon storage, monitoring, and management. This study leveraged pre-stack 
Amplitude-vs-Angle (AVA) attributes with machine-learning techniques to estimate CO2 saturation in the 
lower Tuscaloosa formation, Cranfield site, Mississippi, USA. Random Forest (RF) and XGBoost (XGB) 
regression models trained yielded low mean absolute errors of 0.029 and 0.028, respectively, on synthetic 
blind test data. Notwithstanding, only the RF model predicted geologically plausible CO2 saturations from 
the field time-lapse pre-stack data. Inference from the CO2 saturation distribution in the anticline reservoir 
indicates slow migration of the injected supercritical carbon from the injection zone down-dip to the crest 
of the structure.   

Introduction 

Seismic surveys remain critical in addressing the three main monitoring objectives of carbon storage in 
geologic reservoirs: conformance, containment, and contingency (Ringrose, 2023). In recent years, the 
integration of post-stack seismic data forms and machine learning algorithms have been utilized to 
characterize CO2 plumes and estimate saturations in geologic reservoirs (Hussein et al., 2021; Leong et 
al., 2024; Li et al., 2021; Xue et al., 2023). While pre-stack seismic attributes have been instrumental in 
conventional hydrocarbon exploration and production management, their application in CO2 saturation 
estimation remains underexplored. This study leverages pre-stack attributes as features for supervised 
machine learning regression algorithms to estimate CO2 saturation. 
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The study focuses on the Cranfield site in Mississippi, USA. Over 2 million metric tonnes of CO2 have 
been injected into the anticlinal lower Tuscaloosa formation at depths between 3012 and 3142 meters 
(Zhang et al., 2013a). 

Methods 

Our workflow encompasses three steps: synthetic data generation, machine learning (ML) modeling, and 
field data inference. Baseline well-log data measuring porosity, bulk density, and P-wave and S-wave 
velocities were sampled at the reservoir columns of four wells penetrating the lower Tuscaloosa 
formation: injector well F1 and monitoring wells F2, F3, and W28. Each well was sampled at 1ft intervals 
within the reservoir columns for fluid substitution, post-stack attribute generation, and subsequent 
compiling as labeled data for machine learning training and validation. The Gassmann fluid substitution 
approach with homogeneous saturation was used to simulate new densities and velocities at an 
incremental 10% change in CO2 saturation from the baseline case (0% CO2 saturation). The average 
reservoir mineral composition ratio used in fluid substitution computation for this study is 79.4% quartz, 
11.8% chlorite, 3.1% kaolinite, 1.3% illite, 1.5% calcite with dolomite, and 0.2% feldspar (Lu et al., 
2012). The elastic properties for the baseline and each CO2 substituted case were used to compute pre-
stack attributes: intercept, gradient, lambda-rho, mu-rho, Poisson’s ratio, and P-wave impedance. The 
intercept and gradient attributes were calculated using Shuey’s approximations at Amplitude-vs-Angle 
(AVA) stacks ranging between 0° and 30° with steps of 3°. The lambda-rho and mu-rho attributes are the 
product of incompressibility with bulk density and rigidity with bulk density, respectively. The calculated 
P-wave acoustic impedance attribute was also normalized to 0.5*In(P-wave impedance). A labeled 
tabular data was compiled with CO2 saturation as the target (dependent variable) and each attribute 
difference (baseline minus fluid-substituted case) for every sampled well data point as features 
(independent variables) for ML modeling. The attributes were computed using the open-source Python 
library Bruges.   

 

Random Forest (RF) and XGBoost (XGB) regression models were built using the Sci-kit Learn Python 
library for machine learning training and validation for this project. The hyperparameters selected for the 
final RF model include number of trees (n_estimators = 66), maximum depth of each tree (max_depth = 
12), and maximum number of leaf nodes per tree (max_leaf_nodes = 200). The final XGB model has 
hyperparameters, number of trees (n_estimators =120), maximum depth of a tree (max_depth = 4), 
maximum number of leaves per tree (max_leaves = 15), and a minimum child weight (min_child_weight 
= 8.1). An 80-20% train-test data split and a further 50-50% split of the test dataset into validation and 
blind test samples were implemented to build models with high accuracy and optimum regularization. 
Pre- and post-injection pre-stack seismic data volumes of the Cranfield field were acquired in 2007 and 
2010, respectively. The time-lapse field seismic volumes, registered by Zhang et al. (2013), were used for 
the pre-stack attribute inversion. Each attribute difference (baseline minus post-injection) was extracted as 
an interval 5ms above the top and below the base reservoir horizons and compiled as features for CO2 
saturation estimation.  

   

Results and Discussion 
 
Both tuned RF and XGB models yielded training scores (r2) of 0.99, whereas validation scores were 0.97 
and 0.98, respectively. Blind test evaluation on both models yielded mean absolute errors of 0.029 and 
0.028, respectively. Figures 1 and 2 highlight the CO2 saturation distribution estimated by the RF and 
XGB models. The section is crossline 197, which parallels the trend of the reservoir anticline structure 
and intersects the wells F1 (CO2 injector), F2 (monitoring), and F3 (monitoring) down-dip. 
Comparatively, the fluid distribution signatures of both models in the reservoir are consistent. However, 
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the CO2 saturation estimation by the RF model ranges from 0 to 100%, whereas that of the XGB model 
ranges from -30% to 120%, which is implausible. Figures 3 and 4 highlight CO2 plumes within the 
reservoir, near the apex (time slice 2250 ms) and down-dip (time slice 2284 ms). It is observed that high 
CO2 saturations are proximal to the injection zone of the reservoir relative to the crest. 

 

Despite the robustness of both models in terms of accuracy and generalization on the synthetic well data, 
the XGBoost model underperforms in estimating CO2 saturation from field seismic data. This could be 
attributed to its inability to map learned weights from the high-resolution well logs to low-resolution 
seismic data. Assessment of the CO2 plume at various elevations within the reservoir structure indicates 
slow migration of the injected supercritical carbon from the injection zone down-dip to the crest of the 
structure. The gentle dip of the reservoir structure, coupled with reservoir heterogeneities, could impede 
CO2 migration. Another contributory factor could be the short time-lapse interval between the baseline 
pre-injection (2007) and monitor post-injection (2010) seismic survey. Therefore, later repeat surveys 
could ascertain the extent of the spatial distribution of CO2 saturation within the reservoir structure. 

     

 

Figure 1. Crossline 197 shows CO2 saturation distribution in the reservoir estimated by the Random Forest (RF) model. The black lines mark the 
location of wells F1, F2, and F3. 

 

Figure 2. Crossline 197 shows CO2 saturation distribution in the reservoir estimated by the XGBoost (XGB) model. The black lines mark the 
location of wells F1, F2, and F3. 
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Figure 3. Time slice at 2250 milliseconds, highlighting CO2 saturation distribution up-dip of the reservoir structure. The black dots mark well 
locations F1, F2, F3, and W-28.   

 

Figure 4. Time slice at 2284 milliseconds, highlighting CO2 saturation distribution down-dip of the reservoir structure. The black dots mark well 
locations F1, F2, F3, and W-28. 

Conclusions 

The study demonstrates the sensitivity of pre-stack seismic attributes and machine learning to estimate 
CO2 saturation. This approach provides a valuable tool for field-scale carbon sequestration monitoring 
and management. Further, thin-bed reservoir effects on seismic amplitude signatures, such as interference 
and tuning, must be investigated and incorporated to build robust models sensitive to field scale 
complexities.  
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