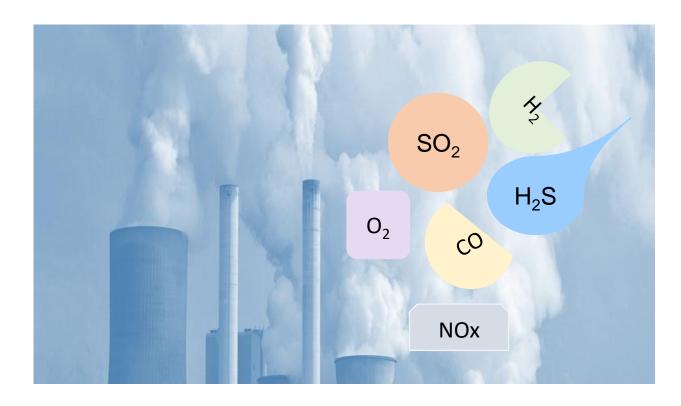


3-5 MARCH 2025 Houston, Texas

A Quick Way to Evaluate the Effect of CO₂ Impurities on Caprock Performance for Carbon Capture and Storage Projects

Yani C. Araujo de Itriago, Benjamin Harrell, Guadalupe Herrera

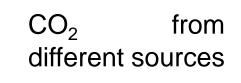
INTERTEK Westport Technology Center, Houston, Texas



3-5 MARCH 2025 Houston, Texas

OUTLINE

- Introduction
- Objective
- Experimental Procedures
- Results and Discussion
- Conclusions



3-5 MARCH 2025 Houston, Texas

INTRODUCTION

CCS > one of the best available technology to reduce carbon emissions from the atmosphere

A major challenge in the implementation of the CCS technology is to meet the CO_2 quality requirements for transportation and injection into the storage site

Negative	Impact

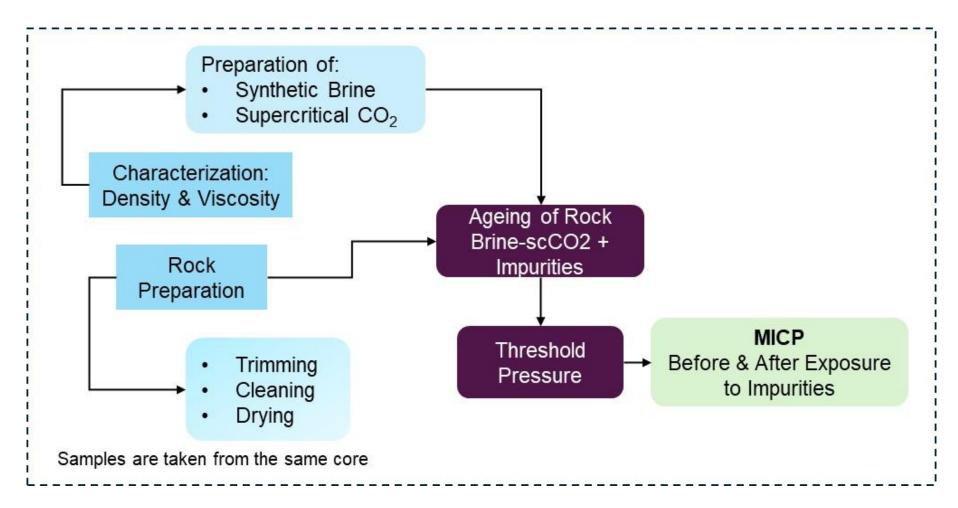
- Cost of CO₂ capture
 - Infrastructure used for its transportation
- Performance of the seal and injectivity

3-5 MARCH 2025 Houston, Texas

IMPORTANT FACTS

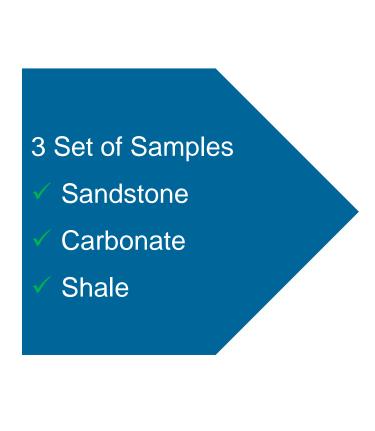
- scCO₂ + impurities → geochemical reactions → impact the CO₂ plume ↓↑, dissolution of the rock mineral ↑ & mineral precipitation ↓
- Impurities are unavoidable during CCS
- \square N₂, Ar, O₂, CO, H₂O, H₂S, SOx, NOx, CH₄, H₂
- □ There is not a global standard for CO₂ specification → project dependent

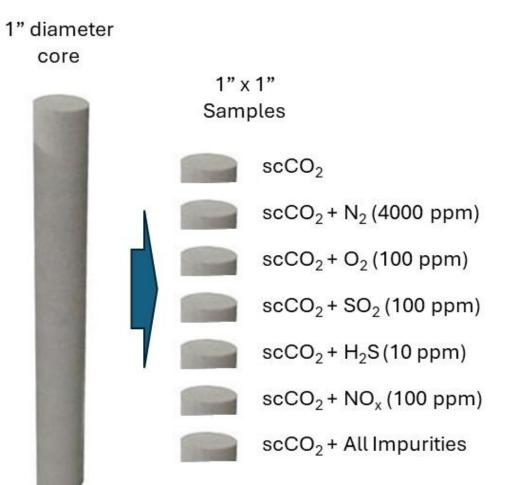
Project	CO2 Mol%	H2O ppm	H2S ppm	CO ppm	O ₂ ppm	CH ₄ ppm	N2 ppm	Ar ppm	H ₂ ppm	SO _x ppm	NO _x ppm
Porthos (Porthos 2022)	≥95	≤70	≤5	≤ 750	≤ 40	≤ 10000	≤ 24000	≤ 4000	≤ 7500	≤ 10	≤5
Northern Lights (Equinor 2019)		≤30	≤10	≤ 100	≤ 10	≤100			≤ 50	≤ 10	≤ 10
National Grid (Brownsort 2019)	≥95	≤ 50	≤20	≤ 2000	≤10				≤ 2000	≤ 100	≤ 100
Dynamis -Store (De Visser 2008)	≥95	≤ 500	≤200	≤ 2000	≤ 4000	≤ 4000	≤ 4000	≤ 4000	≤ 4000	≤ 100	≤ 100
Carbon Net (Murungan 2019)	≥ 93.5	100	100	≤ 5000	5	5	5	5	5	200	250
East Cost CO ₂ Cluster (ECC 2022)	≥96	≤ 50	≤5	≤ 100	≤ 10	≤ 4000	≤4000	≤ 4000	≤ 750	≤ 20	≤ 10

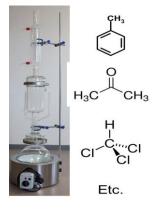

OBJECTIVE

- \Box CO₂ co-injected with impurities \rightarrow costs reductions
- Effect of the impurities in the process performance must be evaluated
- Geological Storage → impurities can significantly affect key properties of the seal & reservoir rock
- Injection pressure must be > threshold pressure of storage formation, but < threshold pressure of the caprock
- $\hfill\square$ The threshold pressure \rightarrow caprock seal capacity

This study was performed with the aim to establish a quick procedure to evaluate the effect of the impurities commonly present in the CO_2 stream in the threshold pressure

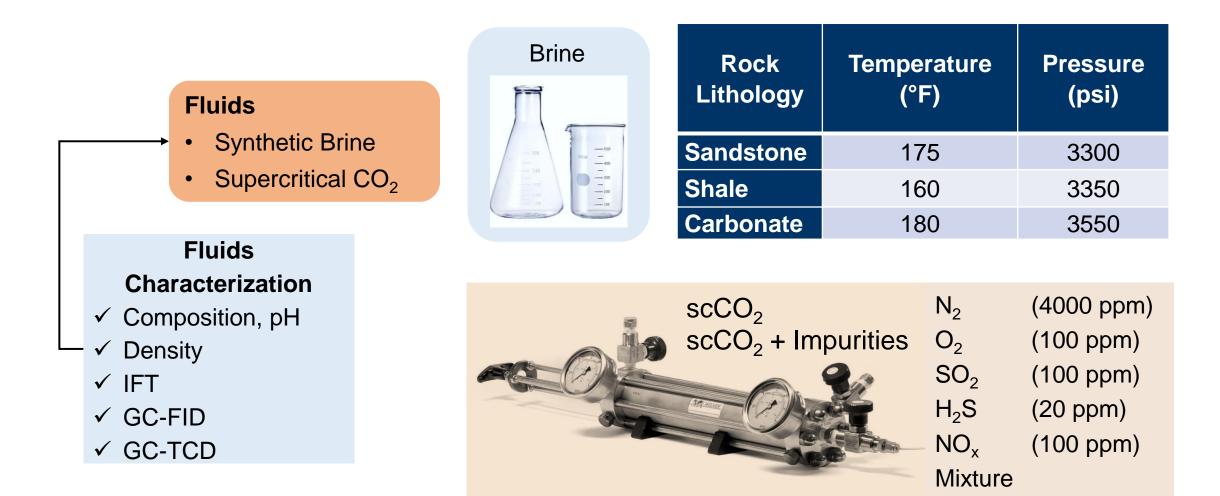

EXPERIMENTAL METHODS: WORKFLOW





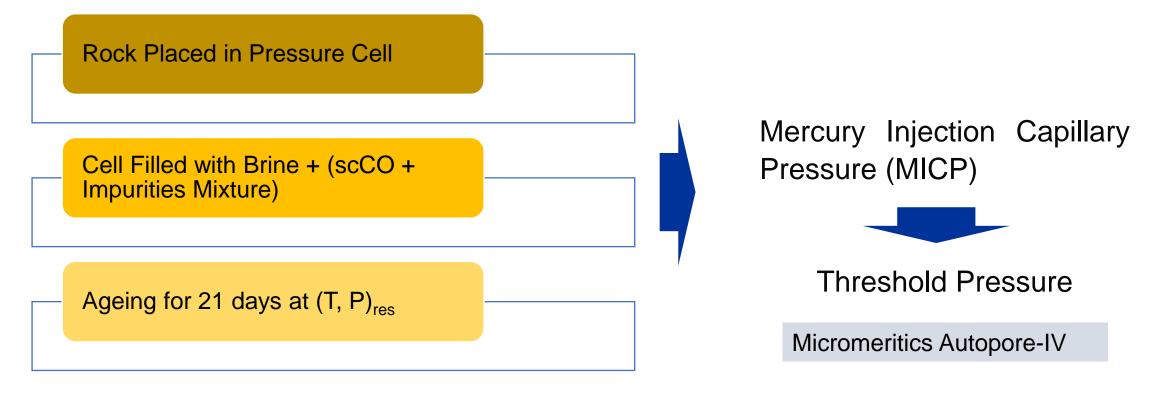
core

EXPERIMENTAL METHODS: ROCK PREPARATION



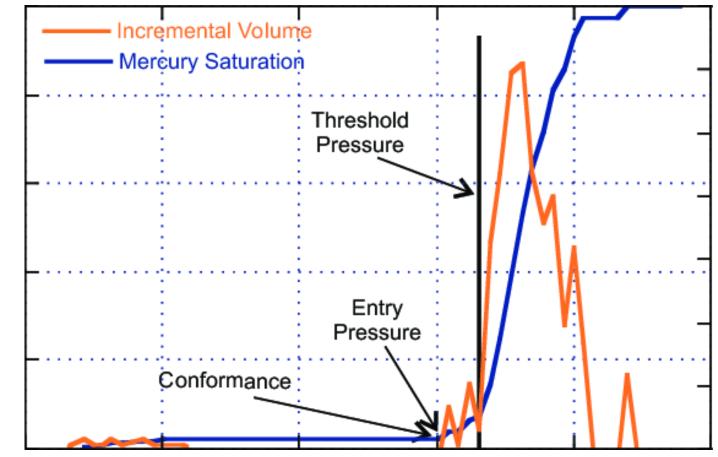
Cleaning Solvent selected by lithology **Drying**

3-5 MARCH 2025 Houston, Texas


EXPERIMENTAL METHODS: FLUIDS

EXPERIMENTAL METHODS: STATIC AGEING & MICP

- Static tests \rightarrow effect of CO₂ in the rock-fluid system during long-time storage
- Sealing performance of the storage rock and caprock \rightarrow Threshold Pressure



3-5 MARCH 2025 Houston, Texas

EXPERIMENTAL METHODS: MICP

Mercury Injection Capillary Pressure

- Entry pressure → pressure at which mercury starts to penetrate the pores of the rock
- Threshold pressure → pressure at which a continuous filament of non-wetting phase extends through the pore network of the sample & represents capillary seal breach

Source: Svendsen et al. (2004)

RESULTS & DISCUSSION

Sandstones: Changes in Threshold Pressure

Rock Lithology	Fluid System	Laboratory Threshold Pressure (psi)	IFT (dyne/cm)	Cos (θ)	Reservoir Threshold Pressure* (psi)
Sandstone 1	$scCO_2$ + Brine	2834.25	40.63	0.999	313.37
Sandstone 2	$scCO_2 + Brine + N_2$	2645.98	40.04	0.999	288.13
Sandstone 3	$scCO_2 + Brine + O_2$	2608.23	39.16	0.975	271.07
Sandstone 4	$scCO_2 + Brine + SO_2$	2298.34	25.45	0.906	138.09
Sandstone 5	$scCO_2 + Brine + NO_x$	2132.45	24.53	0.908	129.30
Sandstone 6	$scCO_2 + Brine + H_2S$	2398.93	39.34	0.991	254.57
Sandstone 7	$scCO_2$ + Brine + All	2046.78	23.12	0.906	116.78

*Reservoir Threshold Pressure: Delta Above in-situ Pore Pressure

3-5 MARCH 2025 Houston, Texas

RESULTS & DISCUSSION

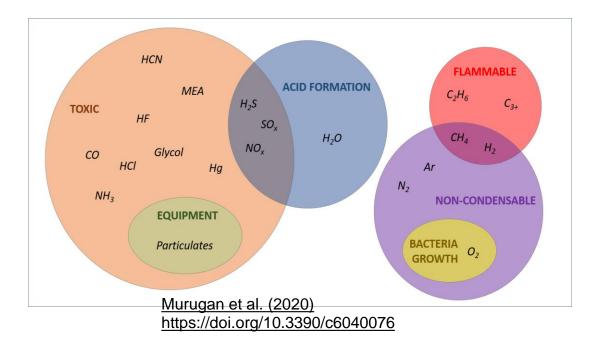
Shales: Changes in Threshold Pressure

Rock Lithology	Fluid System	Laboratory Threshold Pressure (psi)	IFT (dyne/cm)	Cos (θ)	Reservoir Threshold Pressure (psi)	
Shale 1	scCO ₂ + Brine	6521.67	38.95	0.999	691.27	
Shale 2	$scCO_2 + Brine + N_2$	6325.43	38.85	0.999	668.32	
Shale 3	$scCO_2 + Brine + O_2$	6305.34	30.78	0.835	441.07	
Shale 4	$scCO_2 + Brine + SO_2$	6023.56	19.36	0.896	284.65	
Shale 5	$scCO_2 + Brine + NO_x$	5876.24	17.09	0.888	242.76	
Shale 6	$scCO_2 + Brine + H_2S$	5998.47	24.05	0.891	349.86	
Shale 7	$scCO_2$ + Brine + All	5025.87	17.48	0.886	212.02	

3-5 MARCH 2025 Houston, Texas

RESULTS & DISCUSSION

Carbonates: Changes in Threshold Pressure


Rock Lithology	Fluid System	Laboratory Threshold Pressure (psi)	IFT (dyne/cm)	Cos (θ)	Reservoir Threshold Pressure (psi)
Carbonate 1	$scCO_2$ + Brine	1196.34	39.36	0.989	126.86
Carbonate 2	$scCO_2 + Brine + N_2$	1194.67	38.96	0.979	124.05
Carbonate 3	$scCO_2 + Brine + O_2$	1189.57	31.75	0.845	86.86
Carbonate 4	$scCO_2 + Brine + SO_2$	756.35	18.45	0.906	34.44
Carbonate 5	$scCO_2 + Brine + NO_x$	748.27	17.34	0.908	32.07
Carbonate 6	$scCO_2 + Brine + H_2S$	1006.78	36.15	0.921	91.24
Carbonate 7	$scCO_2$ + Brine + All	635.67	19.36	0.896	30.04

RESULTS & DISCUSSION

- When iron species are present in the rock, undesirable reactions can happen in presence of brine + (CO₂ + O₂) → Sulfuric & nitric acid can be formed, and iron sulphates can be produced leading to mineral dissolution and precipitation
- During short-term storage the impact of N₂ and H₂S in the TEP was significantly less compared with the SOx, NOx, and Oxygen impurities; however, these impurities could cause major issues if the CO₂ stored is considered for further applications

$$P_{bCO2} = P_{aHg} \frac{\sigma_{bCO2} \cos \theta_{bCO2}}{\sigma_{aHg} \cos \theta_{aHg}}$$

CONCLUSIONS

- To determine the threshold pressure, MICP is faster than other methods; however, results need to be converted to reservoir conditions.
- High impact of IFT and θ on the threshold pressure and hence on the seal capacity of the caprock. IFT CO₂-brine decreased significantly in presence of SO₂ and NOx contaminants with negative impact in the threshold pressure.
- The impact of the impurities seems to be stronger in shales & carbonates compared to clean sandstones.
- The findings of this study can be used to understand the effect of CO₂ impurities, as part of the requirements established for the safe implementation of the technology.
- The methodology used in this study is recommended for a <u>quick and low-cost</u> assessment of the effect of the CO₂ impurities on the caprock and the reservoir rock.

3-5 MARCH 2025 Houston, Texas

ACKNOWLEDGEMENTS

We'd like to thank INTERTEK Westport Technology Center for the support and encouragement to share the results of this study.

Thank You! Questions?