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Industry Challenges

* Cementing is critical to ensure well stability and zonal isolation
* CO,-cement interactions can pose challenges to long-term CO, storage
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Chemistry of CO,—induced Alteration: Carbonation & Bicarbonation

‘1’: Original Cement (White) ‘2’ : Carbonate (Light Gray ) ‘3’: Bicarbonate (Dark Gray )

Ca(OH), CO, +Ca(OH), - CaCO, + H,0 CO, +CaCO; + H,0 — Ca(HCO),
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CO, reacts with hydroxide (Ca(OH),) in Carbonate reacts with water to form

Plug is submerged in CO, saturated brine —
cement and forms carbonate. bicarbonate.

CO, is diffusing into the cement through its
circumference.



Carbonation Depth — Experimental Observation
Exposure to CO, Saturated Brine
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CO, Saturated Brine

Three distinct zones can be seen.

L [:1
= Zone 1 is pristine cement (hardness reading 64 HV)

=  Zone 2 is carbonated zone — has smaller permeability and higher strength (127 HV)

=  Zone 3 (Bicarbonated) — has higher permeability and lower strength (27 HV)

4 Source: Environ. Sci. Technol. 2007, 41, 13, 4787-4792 ( U.S. Department of Energy)



Benefits Of CO,-Cement Interaction Multiscale Modeling

Improve accuracy in capturing cement
properties by adding microstructure scale

Evaluation of carbonation reactions
effect on cement properties

Sy

Microstructure model Property homogenization Wellbore stability

Large-scale evaluation of well integrity




Image Segmentation

 Micro-CT image from NIST Visual Cement Data Set (Bentz et al., 2002), image resolution is 0.95 um
» Water/Cement mass ratio is 0.45, curing time is 7 days
 Unique image processing capability that permits a more accurate N-phase segmentation

B600 grey scale image B600 segmented cement image B100 example
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Assumptions for Carbonation And Bicarbonation

» Carbonation assumption: 100% of CH converts to CaCO, CO, + Ca(OH), - CaCO, + H,0
» Bicarbonation assumption: CaCO, dissolved and converted to pore CO2 3 CaCO3 -+ HZO — Ca(HCO?’)2
* |Image processing to mimic the carbonation and bicarbonation processes
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Baseline Simulation

* B150 is selected as the REV

* Apply deformation to measure the elastic modulus of cement sample

Image imported to Abaqus
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Change In Mechanical Property Due To Reactions

Image processing to mimic the carbonation and bicarbonation processes

Perform numerical simulations based on updated cement images
Carbonation: CO, + Ca(OH), - CaCO, + H,0
Bicarbonation: CO, + CaCO, + H,0 - Ca(HCO,),
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Validation with Experimental Data

Experimental data from Zhang et al. 2020
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The sample was carbonated and their mechanical behavior was measured

Inclusion of the CaCO, microporosity is critical to manifest the hysteresis

Small hysteresis is observed when plotting Young's modulus against porosity

Consider microporosity
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Diffusivity of Cement

 Lab data from steady state migration tests of chloride, iodide, and tritiated water (Limtong et al. 2023)

» Random walk code is used to evaluate the relative diffusivity

 Hysteresis is observed between carbonation and bicarbonation reactions

Validation with lab data for noncarbonated cement
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Wellbore Model Geometry

* Domainsize:2mx2mx0.1m
* Cement outer radius : 0.1556 m
»  Casing outer radius: 0.1254 m, casing inner radius: 0.1084 m
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Multistage Finite Element Model

 Northern Lights project is part of the Norwegian full-scale CCUS project “Longship”
» Multistage model, which can quantify the stress condition and state variables in each well stage and permit us to capture the initial
stress and strain state before modeling a certain stage
 Carbonation reactions occur during the injection stage
Multistage model

Schematic of subsurface

1. Initial equilibrium 2. Drilling 3. Casing

l

4. Cement slurry 5. Cement hardening 6. Injection and reaction

Source: the northern lights dataset was made publicly available by Equinor ASA



14

Implication to Wellbore Stability

« Thermal contraction caused by the cold injected CO, will induce tensile hoop stress and plastic strain in the cement annulus
«  Carbonation process will further increase the hoop stress as well as the plastic strain
« Bicarbonation process will mitigate the hoop stress and induce no more plastic strain

Original Carbonation Bicarbonation
Hoop stress (MPa) ‘ ‘
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Plastic strain
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Conclusions

* The changes on the cement 3D microstructure due to the carbonation reactions can be modeled
by a rule-based process, when the Damkohler number is small.

 The microstructural simulation offers a unique opportunity to investigate the chemo-mechanical
effects of carbonation reactions and the simulation results indicate that the bicarbonation process
may lead to a non-trivial evolution of the constitutive relationship.

* The inclusion of the microporosity of CaCO; is critical to manifest the hysteresis behavior.

 The carbonation process could increase the cement modulus and impose an adverse impact on
the well stability as it may induce tensile failure and damage to the cement.

* Although the bicarbonation process can reduce the stress level in the cement sheath, it tends to
increase the porosity and permeability of cement as well as the apertures of pre-existing fractures,
which may induce leakage of CO,.
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