

3–5 MARCH 2025 HOUSTON, TEXAS

Comparison of CO₂-Brine and N₂-Brine Relative Permeabilities on Multiple Rock Types

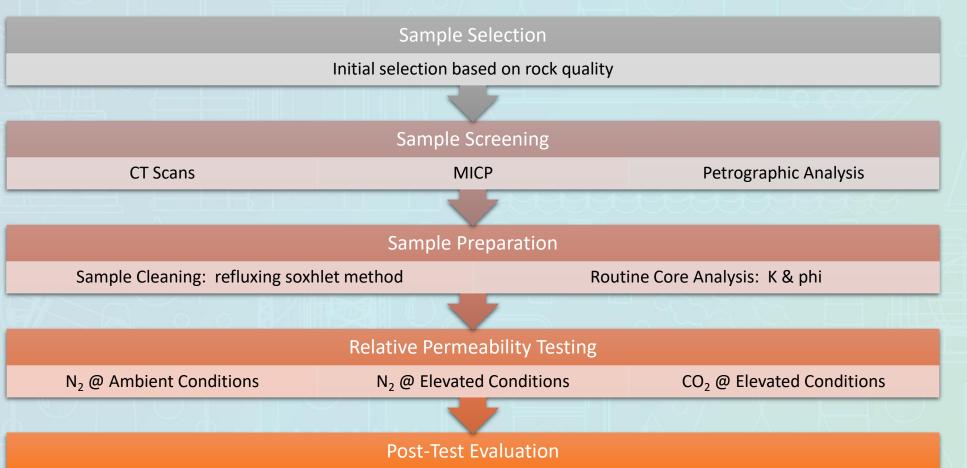
M. Martin^{*1}, S. Drylie¹, F. Chen¹, B. Dindoruk²

1. Core Laboratories, 2. University of Houston

Introduction

- Why?
 - Use Case(s) as Highlighted by the Industrial Client
 - Constraints
 - Cost
 - Timing
- Challenges
- General Workflow
- Results
- Ongoing Analysis & Future Work

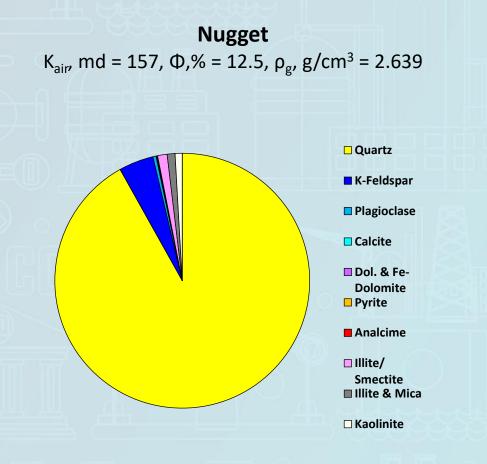
Why?

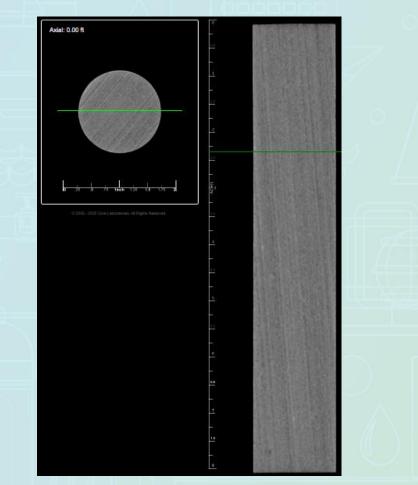

Clients asked.

- Challenges
 - Test system interaction
 - Testing concerns
- Increased cost
- Increased timing

3-5 MARCH 2025 Houston, Texas

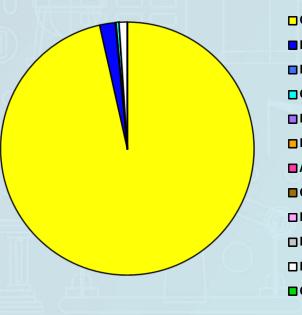
General Workflow

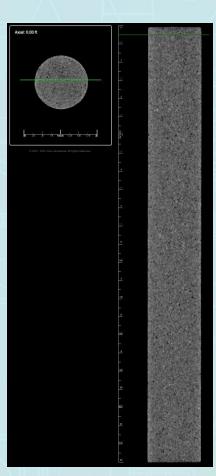


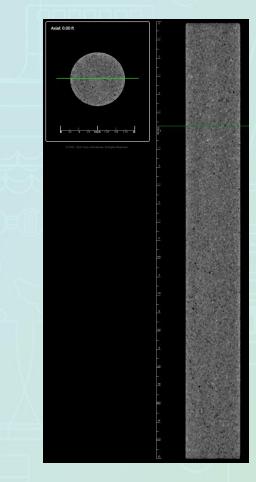

Petrographic Analysis

3-5 MARCH 2025 Houston, Texas

Sample Selection

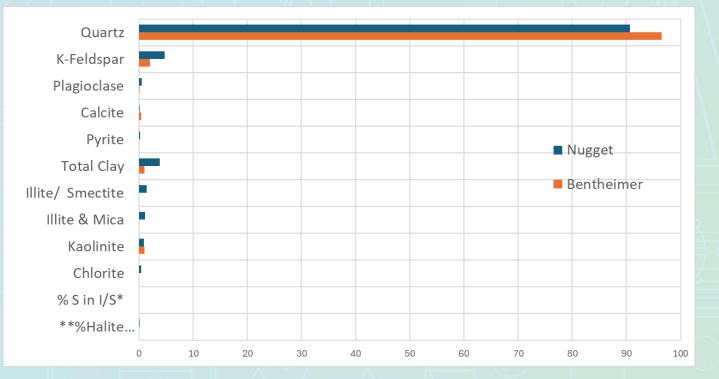



3-5 MARCH 2025 Houston, Texas


Sample Selection

Bentheimer K_{air} md = 2670, Φ ,% = 22.5, ρ_{g} , g/cm³ = 2.635

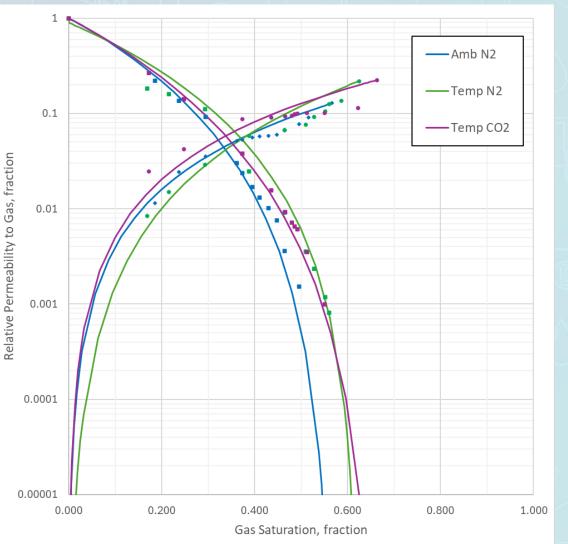
Quartz
K-Feldspar
Plagioclase
Calcite
Dolomite
Pyrite
Analcime
Clinoptilolite
Illite/Smectite
Illite & Mica
Kaolinite
Chlorite



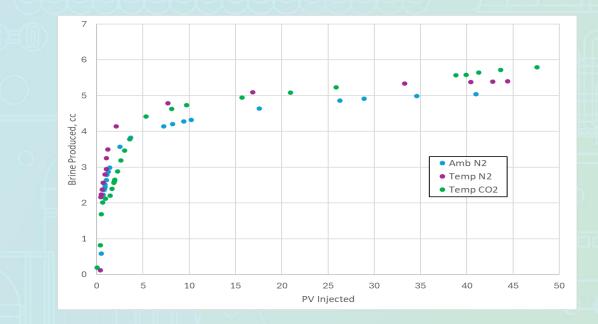
3-5 MARCH 2025 Houston, Texas

Sample Selection

Sample		Nugget	Bentheimer	
Whole Rock Mineralogy (Weight %)	Quartz	90.7	96.5	
	K-Feldspar	4.7	2.0	
	Plagioclase	0.5	0.1	
	Calcite	0.1	0.4	
	Pyrite	0.2	0.0	
	Total Clay	3.8	1.0	
Clay (Phyllosilicate) Mineralogy (Weight %)	Illite/ Smectite	1.4	0.0	
	Illite & Mica	1.1	0.0	
	Kaolinite	0.9	1.0	
	Chlorite	0.4	0.0	
	% S in I/S*	10-20		
	**%Halite	0.1	0.0	

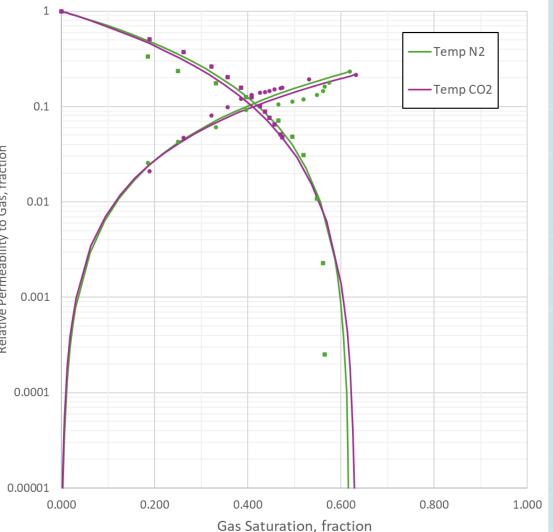

Procedure

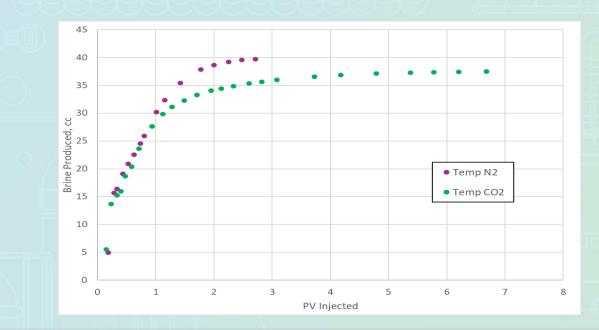
- Samples were cleaned and dried.
- Routine core properties were measured.
- Samples saturated with 100K ppm sodium chloride (NaCl) brine.
- Specific permeability to brine (Kw) was measured.
- USS relative permeability measured
 - N₂-displacing-brine at ambient conditions
 - N₂-displacing-brine at 150°F, 1500 psi NCS, and 1500 psi (pore pressure)
 - CO₂-displacing-brine at 150°F, 1500 psi NCS, and 1500 psi (pore pressure)



3–5 MARCH 2025 Houston, Texas

Results - Nugget


	Initial Conditions			Terminal Conditions		
	Specific Kw,					
Sample	md	Sw, fraction	Rate	Sg, fraction	Krg	Recovery
Amb N2	71.7	1.00	Initial Bump	0.516 0.566	0.091 0.129	0.516 0.566
Temp N2	71.7	1.00	Initial Bump	0.587 0.624	0.135 0.218	0.587 0.624
Temp CO2	71.7	1.00	Initial Bump	0.622 0.663	0.113 0.224	0.622 0.663



3-5 MARCH 2025 HOUSTON, TEXAS

Results - Bentheimer

	Initial Conditions			Terminal Conditions		
	Specific Kw,					
Sample	md	Sw, fraction	Rate	Sg, fraction	Krg	Recovery
Temp N2	2650	1.00	Initial	0.575	0.179	0.575
			Bump	0.618	0.232	0.618
Temp CO2	2600	1.00	Initial	0.532	0.193	0.532
			Bump	0.632	0.216	0.632

Relative Permeability to Gas, fraction

Ongoing Analysis & Future Work

- Testing on additional rock types and varying quality
- Relative permeability from Pc Analysis
- Digital Rock Analysis

Conclusions

- CO₂ relative permeability testing poses numerous challenges. The challenges are compounded with the steady-state displacement process
- In two (2) different rock types of varying quality, N₂ and CO₂ showed similar behavior in drainage relative permeability
- Further testing at various testing conditions is required to develop a full suite of results for comparison

3-5 MARCH 2025 Houston, Texas

Special Thanks to the

Dr. Birol Dindoruk of University of Houston and His Team & Core Laboratories