

3–5 MARCH 2025 HOUSTON, TEXAS

Persistent Microseismic Monitoring Using Robust Permanent SADAR Arrays

K.D. Hutchenson, J. Jennings, E.B. Grant, D. Quigley, J. Yelton, and P.A. Nyffenegger,

3–5 MARCH 2025 Houston, Texas

Introduction Background Results Conclusion What's Next Acknowledgements References

3–5 MARCH 2025 HOUSTON, TEXAS

INTRODUCTON

Tradition methods of microseismic monitoring, measurement, and verification (MMV) for geologic carbon storage (GCS) utilize (Eaton, 2018):

- Networks of surface sensors, covering large areas, and
- Downhole sensor arrays, typically using existing wells to save costs.

Sparse networks using permanently emplaced compact volumetric phased arrays (SADAR):

- Provide superior data and information,
- Resulting in more precisely locating lower magnitude events,
- Robust to sensor attrition for long term deployment,
- Dual use for passive and active source monitoring, and
- Smaller footprint

3-5 MARCH 2025 HOUSTON, TEXAS

BACKGROUND

Containment and Monitoring Institute (CaMI) of Carbon Management Canada (CMC) operates a Field Research Station (FRS) in Newell County of southern Alberta, Canada.

BB3

BB2

1

A2

A1

Geochemistry Well – Obs #1 - DAS
Geochemistry Well – Obs #2 –DAS, 3C phones
Injection Well
SADAR array
1m deep trench – DAS
Broadband Seismometers
Permanent 3C Geophones @ surface

3-5 MARCH 2025 Houston, Texas

3-5 MARCH 2025 Houston, Texas

Drill (4" hole), grout, push sensor strings into hole

3-5 MARCH 2025 Houston, Texas

3 sensors per string; 2 strings taped together; bottom sensor installed in a metal cage to push sensor string down the hole.

Geospace GS-ONE 10 Hz vertical phones

3–5 MARCH 2025 Houston, Texas

8

Buried all cables. Digitizers go in an in-ground vault to service if needed. Geospace S-8 DAQs.

3-5 MARCH 2025 Houston, Texas

Results

36 months of monitoring:

1522 events with Z > 15 m with 4 array locations

9878 events with surface events

3-5 MARCH 2025 Houston, Texas

Average Mw Estimate

Signal power vs. source-receiver range, 412 well-located events color coded by Mw. Events from Nov 2021 to Oct 2023, with z > 10 m. Signal levels are solid lines adjusted for propagation loss.

2/21/2025

Mw (Brune 1970, 1971) distribution for the 3-yr period.

10

3-5 MARCH 2025 Houston, Texas

ROBUST

A1 Azimuthal Deviation

A1 Velocity Deviation

Array robustness: statistically determined from an average of 10 trials of each value of n sensors missing

2/21/2025

11

3-5 MARCH 2025 Houston, Texas

Performance Model vs. Observed

2/21/2025

Site provides the data to both calculate network performance from measured attributes, then compare the model with the observed data.

12

3-5 MARCH 2025 HOUSTON, TEXAS

UTM12E

Conventional reflection seismic processing sequence with beamforming to a specific depth.

Major strata highlighted. 2/21/2025

Line 13 Line 15

Injection Well Observation Wells

SADAR Arrays

Line Midpoints

5.5897

5.5896

5.5895

5.5894 5.5893

5.5892

5.5891 5.589

5.5889

5.588

14

CONCLUSIONS

- Four (4) arrays installed in 7-8 days...working.
- Small footprint: four arrays occupy ~150 m².
- Operating at 98.7%; no down time for maintenance:
 - Robustness has been statistically explored with respect to sensor attrition.
- Burial reduces surface noise, increases signal-to-noise.
- Results demonstrate the passive and active capabilities of the SADAR arrays.
- To date, created human vetted bulletin with location, uncertainty, but with other attributes.
- A SADAR array provides lower magnitude thresholds, -2.75 < Mw < -0.75.

WHAT'S NEXT

- Continue passive monitoring at site.
- Repeated active surveys over time are easily achievable.
- Exploring fixed source, fixed receiver path with CMC.

See Poster CCUS 4186259, Quigley et al. for more complete analysis of the active imaging results.

ACKNOWLEDGEMENTS

Quantum Technology Sciences, Inc., is a wholly owned subsidiary of Geospace Technologies Corporation, Inc. We acknowledge CMC for providing access to the CaMI Newell County Facility to enable installation of the SADAR system, and for sharing the data from the surface and downhole networks. The Newell County Facility is supported by funding from the Global Research Initiative at the University of Calgary from the Canada First Research Excellence Fund and from the CaMI Joint Industry Project. CMC is also acknowledged for providing operational data from the site.

REFERENCES

- Bratt, S.R. and T.C. Bache, 1988, Locating events with a sparse network of regional arrays: Bull. Seism. Soc. Am., **78**(2), 780-798.
- Brune, J., 1971, Correction: Journal of Geophysical Research, 76, 5002.
- Brune, J., 1970, Tectonic stress and the spectra of seismic shear waves from earthquakes: Journal of Geophysical Research, 75, 4997-5009.
- Eaton, D., 2018, Passive Seismic Monitoring of Induced Seismicity: Cambridge University Press, New York.
- Hutchenson, K.D., D. Quigley, J. Longbow, E.B. Grant, P.A. Nyffenegger, J. Jennings, M.A. Tinker, M. Dahl, D. Grindell, M. Macquet, and D.C. Lawton, 2023, Microseismic monitoring using SADAR arrays at the Newell County carbon storage facility: what have we learned in a year?: Presented at GeoConvention, 2023, Calgary.
- Lawton, D.C., J. Dongas, K. Osadetz, A. Saeedfar, and M. Macquet, 2019, Chapter 16: Development and analysis of a geostatic model for shallow CO2 injection at the Field Research Station, Southern Alberta, Canada, in T. Davis, M. Landro, and M. Wilson, eds., Geophysics and Geosequestration: Cambridge University Press, 280-296. DOI 10.1017/9781316480724.017.
- Macquet, M., D. Lawton, K. Osadetz, G. Maidment, M. Bertram, K. Hall, B. Kolkman-Quinn, J. Monsegny Parra, F. Race, G. Savard, and Y. Wang, 2022, Overview of Carbon Management Canada's pilot-scale CO2 injection site for developing and testing monitoring technologies for carbon capture and storage, and methane detection: Recorder, 47, No. 01. 16

3–5 MARCH 2025 HOUSTON, TEXAS

REFERENCES (continued)

- Macquet, M., D.C Lawton, A. Saeedfar, and K.G. Osadetz, 2019, A feasibility study for detection thresholds of CO2 at shallow depths at the CaMI Field Research Station, Newell County, Alberta, Canada: Petroleum Geoscience, 25(4), 509-518.
- Nyffenegger, P.A., J. Zhang, E.B. Grant, D. Quigley, K.D. Hutchenson, M.A. Tinker, D.C. Lawton, and M. Macquet, 2023a, Performance and outlook for the SADAR array network at the Newell County Facility: First Break, **41**, 56-62.
- Nyffenegger, P.A., E.B Grant, J. Zhang, J. Jennings, D. Quigley, K.D. Hutchenson, M.A. Tinker, M. Macquet, and D.C. Lawton, 2023b, Estimates of performance model factors for passive microseismic SADAR phased arrays at the Newell County Facility: Presented at GeoConvention 2023, Calgary.
- Nyffenegger, P.A., M.A. Tinker, J. Zhang, E.B. Grant, K.D. Hutchenson, and D.C. Lawton, 2022, Compact phased arrays for microseismic monitoring: First Break, **40**, 69-74.
- Quigley, D., P. A. Nyffenegger, K. D. Hutchenson, J. Yelton, 2025, Active source sparse imaging using permanent SADAR arrays, presented at CCUS 2025, Houston, TX.
- Zhang, J., K.D. Hutchenson, P.A. Nyffenegger, E.B. Grant, J. Jennings, M.A. Tinker, M. Macquet, and D.C. Lawton, 2023, Performance comparison of compact phased arrays and traditional seismic networks for microseismic monitoring at a CO2 sequestration test site: The Leading Edge, 42(5), 332-342.

3–5 MARCH 2025 HOUSTON, TEXAS

END