

3–5 MARCH 2025 Houston, Texas

Business Models for Carbon Capture and Utilization: A Case Study in Finland

Adebayo Agbejule and Maarit Mäkelä

Vaasa University of Applied Sciences (VAMK) Department of Energy and Environmental Engineering Wolffintie 30, Vaasa, Finland

Introduction

- Carbon capture, utilization, and storage (CCUS) refers to a group of technologies aimed to separate CO₂ from large-scale emission sources for transporting the captured CO₂ to specific sites but followed by CO₂ recycling in such case, both for utilization or geological storage purposes (Li et al., 2016).
- The role of CO₂ capture, utilization, and storage is recognized as a key option in reducing greenhouse gas emission (Ku et al., 2020).
- Research on CCU has focused on capturing and utilization technologies, with little research on business models and development (Saarinen et al., 2024).
- Muslemani et al.(2020) identified that one of the most fundamental reasons why CCUS is not an established technology in industrial sectors, is that there is yet to be defined concrete business models for the operation of CCU utilization.

Objectives of the Paper

- A knowledge gap exists in identifying the most important elements driving success in industrial CCUS business models.
- Review the main components of existing business models.
- Present a case study of carbon capture utilization in Finnish energy and process industry with emphasis on value propositions.

Definition of a Business Model

- Business model is "how a firm does business", in other words, "a company's logic of earning money".
- The core idea of a business model is to define how a company delivers value to customers, attracts customers to pay for value, and converts those payments to profit.
- A primary component of a business model is its value proposition, explicitly stating the value and attractiveness of the product or service offered to the customer.

3-5 MARCH 2025 HOUSTON, TEXAS

Business Models from Literature

3-5 MARCH 2025 Houston, Texas

Business Model Canvas

Customer Segments An organization serves one or several Customer Segments.

Value Propositions s It seeks to solve customer er problems and satisfy customer needs with value propositions.

Customer Relationships

Customer relationships are established and maintained with each Customer Segment.

Source: Business Model Canvas (Alexander Osterwalder et al., 2010)

Value Propositions for CCUS

RR Resource Recovery

Value proposition for CCUS

 Manage CO₂ emissions while improving O&G production

Key drivers

- Project return
- Economic growth

Technical imperatives

- Operational performance
- Site-to-site variability
- Process standardization
- EOR yield vs CO₂ storage

Policy requirements

- Carbon pricing certainty for project financing
- Path to deep decarbonization

Moving forward (near-term)

 Scale up infrastructure and gain operational experience balancing recovery vs storage

Value proposition for CCUS

 Affordably reduce emissions from economic activity

Key drivers

- Climate action goals
- CO₂ price or emissions cap

Technical imperatives

- Cost reduction (capex & opex)
- Low-carbon H₂ production
- CO₂ conversion to valueadded products

Policy requirements

- Clarity in policy over time and across sectors
- Consistency across borders

Moving forward (near-term)

 Launch industrial hubs and derisk large-scale investment in CCUS

Value proposition for CCUS • Enable high renewables

Enable high renewables penetration onto the grid

Key driver

 Cost-competitive dispatchable low-carbon power

Technical imperatives

- Flexibility
- Innovative uses of CCS as an enabler for electrificationbased decarbonization

Policy requirements

 Adequate electricity and carbon market signals for CCUS design and integration

Moving forward (near-term)

 Pilot use of CCS for grid stability and validate business models around indirect value. **Resource recovery** focuses on the management of carbon in the production of hydrocarbon resources, primarily the removal of CO_2 from natural gas extraction and the use of CO_2 in enhanced oil recovery operations: (*key driver is revenues and costs*)

Green growth emphasizes CO_2 reductions in support of climate action, using CCUS to reduce the carbon footprint of economic activity (key driver policy and regulation)

Low carbon grid development focuses on the value of CCUS in supporting grid scale energy storage

Establishing the value of CCUS is vital establishing a functional business model

3–5 MARCH 2025 Houston, Texas

Key Elements of a CCUS Business Model

Where is the value proposition?

Project type	Ownership	Economic rationale	Challenges	Stakeholders
Full chain	Public	Public sources	High capital and operating costs	Government
Part chain	Private	Grants, tax credits, loan support	Long project lead times	Policy makers
Self-capture with third-party CO ₂ offtake	Public-private partnership	State-owned enterprises	Project complexity	Regulators (including permitting)
CO ₂ transport and storage as-a-service		Carbon pricing	Innovation gaps	Private sector
Capture-as-a-service		Public procurement of low- emissions products	Co-ordination among various steps and/or players	
		Public procurement of carbon		Project investors and owners
		dioxide removal services	Cross-border transport	Developers and operators
		Private sources	Policy uncertainty	Supply chain contributors
		Direct use of CO ₂	Public awareness and	
			acceptance	Civil society and the public
		Low-emissions products	Availability of finance	
		Voluntary carbon markets	Risk management and insurance	

Source: International Energy Agency. (2023). CCUS policies and business models: Building a commercial market. International Energy Agency. https://www.iea.org/

Key Roles of Business Model

- The term "business model" refers to a company's plan for making a profit. It identifies the products or services the company plans to sell, its target market, the gap in the market it is trying to fill, any anticipated expenses and a financial model to operate in a profitable manner.
- Social and environmental sustainability have recently become a major driver for innovation in companies' business models.
- Divergent value propositions across these models lead to different drivers, technical imperatives, and policy requirements (Ku et al. 2020).
- Business models are not only used to provide revenue certainty but can also tackle specific risks and allocate them in a fair and balanced manner (for instance, between governments and private sector actors for CCUS).

3–5 MARCH 2025 Houston, Texas

Value Propositions of CCU Projects in Finland

ACTORS	VALUE PROPOSITION	APPLICATION	DEPLOYMENT STAGE
Westenergy	Green Growth	CCU for Power-to-fuels (P2X) to produce carbon neutral transportation fuels	Advanced Stage
Fortum	Green Growth	Research on plastics CCU using CO ₂ from WtE plants	Early Development
Keravan Energia Oy	Low Carbon Grid	Piloting and feasibility of power- to-gas in a biomass-fired power plant	Advanced Stage
Turun Seudun Energiantuotanto Oy	Green Growth	Feasibility of a hydrogen and power-to-X plant to produce fuel for heavy road and marine transport	Construction
Neste – SHARC Project	Green Growth	CCS and hydrogen production at the Porvoo oil energy	Advanced Stage

3–5 MARCH 2025 Houston, Texas

Case Study - Westenergy

Case Company	Westenergy in Vaasa, Finland	
Business	Waste to Energy power plant - 200,000 tonnes of waste is refined into electricity, heat & renewable materials, 180,000 tonnes of CO2 is emitted	
Methodology	Case Study	
Data Collection	Interview	

8.

Design of the Powerplant

105 % with fgc

40 bar 400 °C

67 MW

55 MW

~ 8400 h

200 kt/a

6. District heat exchangers

9. Sorbent & residue silos

7. Flue gas cleaning

10. Slag handling

8. Stack

The Westenergy plant is located next to Stormossen in Koivulahti, 9 km from Vaasa

Main consultant:	Ramboll HZI	
Boiler manufacturer:		
Steam turbine:	MAN Energy Solutions	
FGC system:	LAB and B&W Vølund	

Total efficiency:
Steam pressure:
Steam temperature:
Thermal power:
Electric capacity:
Heating capacity:
Annual operating hours:
Processing capacity:

- 1. Tipping hall
- 2. Waste bunker
- 3. Grate
- 4. Boiler
- 4. DUIG
- 5. Turbine and generator

- Three phase flue gas cleaning system
 Phase I: SNCR ammonia injection in furnace (3)
 Phase II: Sorbent injection and filtration (7a)
 - Phase II: Sorbent Injection and filtration (7a)
 - Phase III: Flue gas scrubber and condenser (7b)

3-5 MARCH 2025 Houston, Texas

Value Proposition for Westenergy

ECCU is one of the first full-scale carbon capture and liquefaction projects in the waste-to-energy sector globally

From flue gas to fuel source

- In co-operation with CPC Finland, Prime Capital and Koppö Energia
- Supplying sustainable $\rm CO_2$ for the Koppö Energia 740 GWh synthetic fuel project in nearby Kristinestad
- Replacing fossil fuels in transportation

Circular economy through carbon recycling

- CO₂ also supplied as feedstock for non-fuel products
- Carbon-storing chemical recycling enables high material efficiency

Climate positive waste-to-energy

- Full capture from WtE plant, up to 190 000 tonnes annually
- ECCU enables the decarbonization of Westenergy's operation

Global cleantech exports

- A common effort of Finnish and European cleantech companies
- A cutting-edge solution with global export potential

A major investment in sustainability

- Projected CAPEX 140 M€, supported by 20 M€ energy subsidy grant
- Investment decision in 2025, plant in commercial operation by 2027

e-fuel, permanent carbon products (green growth), & recycling and storage for value added product (green growth).

This requires the development of a business model for supply of CO₂ to develop e-fuel, and for carbon recycling and storage for high material efficiency.

3-5 MARCH 2025 Houston, Texas

From renewables to liquefied methane:

Interview Analysis

"In terms of the business models, the intersection between the green growth model and legislation is rather interesting (or underdeveloped) as value creation from a low energy state molecule like CO_2 is most often dependent on external factors, i.e., policy driven".

"At least in WtE, the demand for carbon dioxide created by regulation and emission targets in other sectors can and does still clash with the specific decarbonization requirements imposed on the CO_2 supplier. When discussing this issue with European colleagues in the WtE sector, most often the expressed primary driver in the EU is an expected emission cost, the direct avoidance or indirect mitigation of this cost being the main benefit of either CCU or CCS operations".

"In this way, CCUS can be seen as a pre-emptive cost mitigation strategy, being hindered by regulatory unclarity on how the carbon removals and emission reductions are actually allocated. Quite often, this has the tendency to lead to discussions on either double counting of emission reductions or imbalances in the benefit sharing from CCU value chains. On the other hand, given that this cost mitigation may be the prerequisite for future existence or growth, this phenomenon still exists under the green growth umbrella, albeit in a more existential manner. For those with purely biogenic carbon dioxide, the issue is moot".

- Development Manager, Westenergy

Conclusion

- A primary component of a business model is its value proposition, explicitly stating the value and attractiveness of the product or service offered to the customer.
- The value proposition of CCU can change depending on the key drivers behind CCU business models.
- A company can have two value propositions for CCU.
- Each company should assess the role of CCU technologies within its long term targets of growth and climate change mitigation, in order to clearly establish a CCU value proposition, and act accordingly.

3–5 MARCH 2025 Houston, Texas

The authors appreciate the grant support by the Pohjanmaan Liitto MAP UP 2PX project (Finland).

Email: ade@vamk.fi

3–5 MARCH 2025 Houston, Texas

Thank you for listening! Any Questions?