

3-5 MARCH 2025 Houston, Texas

Uncertainty Assessment Methodology for Defining the Area of Review (AoR) in CO₂ Injection Wells

Gonçalo Oliveira / Reservoir Simulation Engineer Diana Mercado / Staff Reservoir Simulation Engineer Victor Lara / Manager Western Hemisphere

Agenda

- Objectives
- Overview
- Methodology
- Case Study
- Conclusions

3-5 MARCH 2025 Houston, Texas

Objectives

Develop methodology to support:

- Develop a robust methodology to support regulatory compliance, including EPA Class VI well requirements, CARB, and other relevant frameworks, domestics and internationals.
- Implement an uncertainty assessment approach to accurately evaluate the Area of Review (AoR) for CO₂ storage projects.
- Optimize CO₂ injection strategies to maximize storage efficiency while mitigating risks.

Challenges

- Ensure safe and efficient CO₂ injection while minimizing uncertainties and risks.
- Maintain project integrity by preventing CO₂ migration beyond the lease area and ensuring long-term containment.

3-5 MARCH 2025 Houston, Texas

Overview

CO₂ storage is focused on long-term geological storage to keep it separate from atmosphere for 1000's years

Storage options:

- Saline aquifers
- Depleted oil/gas reservoirs
- Enhanced oil recovery
- Coalbeds
- Basalt
- Others...

Trapping mechanisms:

- Structural trapping
- Hysteresis
- Solubility
- Mineral trapping

3-5 MARCH 2025 Houston, Texas

Area of Review-AoR

Area of Plume

- Considers the area of the CO₂ plume in gas/supercritical conditions.
- Due to buoyance effects, it will leak if caprock sealing is compromised.

Area of Critical Pressure

- Area where the Δp is higher than critical pressure.
- Critical pressure is the minimum pressure that can make the carbonated water to reach the closest USDW (underground sources of drinkable water).

Area of Review-AoR

Bandilla et al., 2017

3–5 MARCH 2025 HOUSTON, TEXAS

AoR calculation and features in a Simulation Model

- The AOR boundary should be measured considering all layers through vertical aggregation
- The block will be added to the AoR group if it meets any of the conditions (plume or critical pressure)
- Multiple AoR can be tracked for analysis or optimization purposes (i.e. keeping AoR separated for different well sites)

3-5 MARCH 2025 Houston, Texas

AoR calculation 3 Binary array based Aaggregate Get number of nonvertically with max connected on parameter cutbodies (n cluster) value off* 5 Sum values from Calculate block area Multiply step 2 with step 5 in each in a reference layer 4 cluster **Total** Area (ft^2)

*For saturation and critical pressure, if block value for at least one of the conditions if higher than cutoff, 1 is defined if not 0.

3–5 MARCH 2025 Houston, Texas

0.36

0.32

0.28

0.25

0.21

0.18

0.14

0.11

0.07

0.04

0.00

Uncertainties

AoR size and shape will depend on multiple factors

Uncertainties regarding reservoir characteristics:

- Heterogeneity:
 - Porosity
 - Permeability
 - Preferential flow paths
- Fluid
 - Miscibility (depleted oil reservoirs)
 - Salinity (saline aquifers)
- Rock-fluid
 - Relative permeability tables
 - Capillary pressure
 - Hysteresis
- Reservoir Conditions
 - Temperature
 - Pressure

Uncertainties regarding operational conditions and subsurface:

- Individual gas rates
- Injection pressure at surface/bottom-hole
- Perforation interval
- Facility capacity
- Gas deliverability
- Impurities in the gas stream
- ...

3–5 MARCH 2025 Houston, Texas

3–5 MARCH 2025 Houston, Texas

Case of Study

Base Case

- 400x400x96 cells (>15 M grid cells)
- 400x400x7 ft
- Injection depth 4400 ft (super critical conditions)
- 2 injection site (W01, W02)
- 4 injection wells

Uncertainties:

Uncertainty	Parameter Name	Base	Min	Max
Porosity Multiplier	PHIE	1.0	0.9	1.1
Permeability Coefficient $K_{coef}(\phi^b)$	PERM3	52496	25000	72000
KvKh	KvKh	0.5	0.0075	0.5
Maximum Pcap	PCWMAX	51.9	10	100
Individual Gas Rates (ft^3/day)	GasRateW0x_0x	60E+06	5	95E+06

3–5 MARCH 2025 Houston, Texas

Results

- Results show that proxy model has a good accuracy to predict AoR
- AoR probability distribution and cumulative probability provide a quantitative measurement of the AoR
- Most impactful uncertainties (reservoir modeling and operation conditions are highlighted)

AOR=-2.67E+10+2.59*GasRateW01_01+20.41*GasRateW01_02-28.24*GasRateW02_01-55.29*GasRateW02_02-6.43E+09*HYSKRG1+5.34E+09*KvKh ...

3-5 MARCH 2025 Houston, Texas

AoR under uncertainties

- A useful tool to understand the impact that operational conditions can have on the AoR is to have real-time
 updates based on filtered constraints
- Inputs: lease area (red boundary), gas saturation cutoff, critical pressure cutoff

Original rates variability

Reduction in W01 CO2 rate

Reduction in W01/W02 CO2 rate

Real time changes

 $P_{crit} = 160 \text{ psi} \quad S_g = 0.01$

3–5 MARCH 2025 Houston, Texas

Optimization Study while conducting Risk Mitigation

CMOST allows multiple objective functions to be considered in the process. A practical example of objective functions to be used simultaneously on a (robust) optimization are:

- Cumulative injection volume (maximize)
- Number of AoR (maximize to avoid injection site interference)
- Volume of CO2 outside the lease area (minimize)

Conclusions

- The current methodology provides and efficient and interactive way to evaluate the Area of Review under uncertainties
- Results obtained can come as timeseries, data and 2D visualization
- The outcomes can be used to improve new CCS projects approval, including EPA's Class VI well permit requirements
- Multiple objective functions can be used to maximize CO2 injection volume while de-risking projects