
Utilizing Life Cycle Assessment to 
Design a Novel Carbon-Negative 
Power Plant in Appalachia, USA

K. Sale1, M. Miranda1, A. Harrison1, K. Ellett1, D. Stauffer2, S. Winter3, E. Blumer4

1. Carbon Solutions LLC; 2. Worley; 3. CONSOL Energy; 4. OsoMono Ltd



Motivation

• Electricity generated from coal accounted for ~19% of total U.S. energy-related 
CO2 emissions in 2022, representing 55% of total CO2 emissions from the electric 
power sector (EIA, 2024)

• One approach: decarbonized coal-fired power through CCS and biomass co-firing

• Life Cycle Assessment aims to quantify the environmental impacts of a product or 
process, accounting for its entire life cycle → ensures carbon reduction

• ISO 14040 Compliant

• Evaluate the global warming impact of generating 1 kWh of electricity with a co-
fired biomass, waste coal, and virgin coal power facility that employs CCS for 
system optimization by industry partner CONSOL Energy. Determine the limits of 
biomass percentage to achieve carbon neutrality. 



Scope
• Cradle-to-gate analysis for 1 kWh of electricity 

produced, including:
• Production and transport of major raw materials
• On-site emissions
• Construction
• Transport and sequestration of CO2

• Not included: plant decommissioning & demolition →
negligible impact

• Evaluated using openLCA 2.2 software, TRACI 2.1 impact 
assessment, GHG-100 CO2e

• Data Sources: Industry Partner → NETL 45Q LCI & CO2U 
Database → GREET 2023, 1.3.0



System Diagram

Figure 1. System boundary of the proposed 21 CPP BP2 design
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Key model parameters 

Sequestration

Number of Wells 11

Number of Well Head Compressors 1

Formation Leakage 0.5%

Biomass Type Forest Residue

Biomass Energy Content, wet 5,030 Btu/lb

Biomass Moisture Content 30 wt%

Biomass in Feed (Energy-basis) 20%

Coal Blend Virgin & Beneficiated Waste Coal

Coal Blend Energy Content, wet 9,961 Btu/lb

Coal Blend Moisture Content 26.5 wt%

Percentage Waste Coal 50%

Capture System and Transport

CO2 Capture Rate 97%

Number of CO2 Compressors 2

CO2 Pipeline Length 47 miles
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Model Output and Sensitivity Highlights
• Coal power generally produces 

~1000 g CO2e/kWh
• Biomass carbon uptake makes the 

plant’s overall GWP negative 
• At least 14% biomass fraction could 

achieve carbon neutrality

• Construction of the CO2 pipeline 
and its operation have               
non-negligible effects

• NETL CO2U transport and storage 
process: 17.6 g CO2e/kWh

• Sensitivity to storage field 
formation leakage was modeled

• 5.3% leakage rate over 100 years 
would risk the project’s climate 
neutrality

Variable Value [gCO2e /kWh]

Biomass Carbon Uptake -197.2

Virgin Coal Supply 67.1

Lime, Limestone, Amine, PAC 
Supply

4.2

Material Transportation 12.5

On-Site Emissions 36.6

Plant Construction 0.8

CO2 Transport, Storage, and 
Construction

18.7

TOTAL -57.3

Process impact contributions 
at baseline plant design.



Results Comparison 

This study: -57.3 gCO2e/kWh



Conclusions

• A cradle-to-gate impact of -57.3 gCO2e/kWh was calculated for the 
proposed 21CPP system

• 14% biomass must be combusted on an energy basis for this system 
to reach expected carbon neutrality

• Integrating LCA into a design process can improve overall system 
design by identifying key trade-offs and optimizing environmental 
performance



Questions?
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Monte Carlo Simulation
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