

3–5 MARCH 2025 Houston, Texas

Utilizing Life Cycle Assessment to Design a Novel Carbon-Negative Power Plant in Appalachia, USA

K. Sale¹, M. Miranda¹, A. Harrison¹, K. Ellett¹, D. Stauffer², S. Winter³, E. Blumer⁴

1. Carbon Solutions LLC; 2. Worley; 3. CONSOL Energy; 4. OsoMono Ltd

Motivation

- Electricity generated from coal accounted for ~19% of total U.S. energy-related CO₂ emissions in 2022, representing 55% of total CO₂ emissions from the electric power sector (EIA, 2024)
- One approach: decarbonized coal-fired power through CCS and biomass co-firing
- Life Cycle Assessment aims to quantify the environmental impacts of a product or process, accounting for its entire life cycle → ensures carbon reduction
 - ISO 14040 Compliant
- Evaluate the global warming impact of generating 1 kWh of electricity with a cofired biomass, waste coal, and virgin coal power facility that employs CCS for system optimization by industry partner CONSOL Energy. Determine the limits of biomass percentage to achieve carbon neutrality.

Scope

- Cradle-to-gate analysis for 1 kWh of electricity produced, including:
 - Production and transport of major raw materials
 - On-site emissions
 - Construction
 - Transport and sequestration of CO₂
- Not included: plant decommissioning & demolition → negligible impact
- Evaluated using openLCA 2.2 software, TRACI 2.1 impact assessment, GHG-100 CO₂e
- Data Sources: Industry Partner → NETL 45Q LCI & CO2U Database → GREET 2023, 1.3.0

орепьса

3-5 MARCH 2025 Houston, Texas

System Diagram

Figure 1. System boundary of the proposed 21 CPP BP2 design

9-5 MARCH 2025 Houston, Texas

3–5 MARCH 2025 Houston, Texas

Image licensed under creative commons: CC BY-NC

Image licensed under creative commons: CC BY-NC

	Key model	l parameters
	Coal Blend	Virgin & Beneficiated Waste Coal
Coal	Blend Energy Content, wet	9,961 Btu/lb
Соа	l Blend Moisture Content	26.5 wt%
	Percentage Waste Coal	50%
	Biomass Type	Forest Residue
	Biomass Energy Content, v	wet 5,030 Btu/lb
	Biomass Moisture Conter	nt 30 wt%
	Biomass in Feed (Energy-ba	asis) 20%
	Capture System	em and Transport
	CO ₂ Capture Rate	97%
~	Number of CO ₂ Compresso	ors 2
~	CO ₂ Pipeline Length	47 miles
	Seque	estration
\bigcirc	Number of Wells	11 0/
Ν	lumber of Well Head Compre	Tessors 1
	Formation Leakage	0.5%

Image licensed under creative commons: CC BY-SA

Differ://doi.org/10.1016/J.ENERGY.2012.07.007

Model Output and Sensitivity Highlights

- Coal power generally produces ~1000 g CO₂e/kWh
- Biomass carbon uptake makes the plant's overall GWP negative
 - At least 14% biomass fraction could achieve carbon neutrality
- Construction of the CO₂ pipeline and its operation have non-negligible effects
 - NETL CO2U transport and storage process: 17.6 g CO₂e/kWh
- Sensitivity to storage field formation leakage was modeled
 - 5.3% leakage rate over 100 years would risk the project's climate neutrality

Process impact contributions at baseline plant design.

Variable	Value [gCO ₂ e /kWh]
Biomass Carbon Uptake	-197.2
Virgin Coal Supply	67.1
Lime, Limestone, Amine, PAC Supply	4.2
Material Transportation	12.5
On-Site Emissions	36.6
Plant Construction	0.8
CO ₂ Transport, Storage, and Construction	18.7
TOTAL	-57.3

3-5 MARCH 2025 HOUSTON, TEXAS

Results Comparison

Literature Results

Conclusions

- A cradle-to-gate impact of -57.3 gCO₂e/kWh was calculated for the proposed 21CPP system
- 14% biomass must be combusted on an energy basis for this system to reach expected carbon neutrality
- Integrating LCA into a design process can improve overall system design by identifying key trade-offs and optimizing environmental performance

3–5 MARCH 2025 Houston, Texas

Questions?

Acknowledgement

This material is based upon work supported by the U.S. Department of Energy National Energy Technology Laboratory under Award Number DE FE0031998. This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

3–5 MARCH 2025 Houston, Texas

References

[1] Energy Information Administration. 2024. Coal and the Environment. (last updated 17 April 2024). <u>https://www.eia.gov/energyexplained/coal/coal-and-the-environment.php</u>.

[2] European Academies Science Advisory Council. 2018. Negative Emissions Technologies—What Role in Meeting Paris Agreement Targets? https://easac.eu/publications/details/easac-net.

[3] Bennett JA, Abotalib M, Zhao F, Clarens AF. Life Cycle Meta-Analysis of Carbon Capture Pathways in Power Plants: Implications for Bioenergy with Carbon Capture and Storage. Int J Greenh Gas Control 2021;111:103468. <u>https://doi.org/10.1016/j.ijggc.2021.103468</u>

[4] Bare, J. Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts (TRACI) TRACI version 2.1 User's Guide. U.S. EPA Office of Research and Development, Washington, DC, EPA/600/R-12/554, 2014. <u>https://cfpub.epa.gov/si/si_public_record_Report.cfm?Lab=NRMRL&dirEntryId=274755</u>.

[5] Wang M, Elgowainy A, Lee U, Bafana A, Banerjee S, Benavides P, et al. Summary of Expansions and Updates in GREET® 2023. https://www.osti.gov/servlets/purl/2278803.

[6] Skone T, Krynock M, Jamieson, M. NETL CO2U openLCA LCI Database (Version 2.1) [Data set]. Pittsburgh, PA: National Energy Technology Laboratory, U.S. Department of Energy. <u>https://www.netl.doe.gov/energy-analysis/details?id=5d3ec761-3671-46e1-9262-1b227a8715a1</u>.

[7] Krynock, M. NETL 45Q US Average LCI (Version 1) [Data set]. Pittsburgh, PA: National Energy Technology Laboratory, U.S. Department of Energy. https://www.netl.doe.gov/energy-analysis/details?id=c0af018e-fd60-44c8-97ce-ee931b82c728.

[8] National Energy Technology Laboratory. 2013. Gate-to-Grave Life Cycle Analysis Model of Saline Aquifer Sequestration of Carbon Dioxide. <u>https://www.netl.doe.gov/energy-analysis/details?id=813</u>.

[9] Rubin ES, Davison JE, Herzog HJ. The Cost of CO₂ Capture and Storage. Int J Greenh Gas Control 2015; 40:378–400. https://doi.org/10.1016/j.ijggc.2015.05.018.

[10] Schakel W, Meerman H, Talaei A, Ramírez A, Faaij A. Comparative Life Cycle Assessment of Biomass co-Firing Plants with Carbon Capture and Storage. Appl Energy 2014;131:441–67. https://doi.org/10.1016/j.apenergy.2014.06.045.

3-5 MARCH 2025 HOUSTON, TEXAS

Monte Carlo Simulation

Inputs							• × 1
Flow	Category	Amount	Unit	Uncertainty	Provider	Data qı	Description
© Cargo	NETL flows	amine_kg_km	📟 kg*km	lognorm	🗟 Truck Transport - US	(2; 1;	Transport of amine, kg*km
🅸 Cargo	NETL flows	pac_kg_km	📟 kg*km	lognorm	🗟 Truck Transport - US	(2; 1;	Transported of PAC, kg*km
🅸 Cargo	NETL flows	lime_kg_km	📟 kg*km	lognorm	🗟 Truck Transport - US	(2; 1;	Transport of lime, kg*km
© CO2_from_air	PI Data	CO2_inlet_flow_bio_kg	📟 kg	lognorm	🗟 Biomass Boiler	(2; 1;	CO2 in biomass boiler from inlet air stream (
© CO2_from_air	PI Data	co2_inlet_flow_pfbc_k	📟 kg	lognorm	🗟 PFBC x3	(2; 1;	CO2 in PFBC from inlet air stream (kg/kWh)
CO2_from_bio	PI Data	CO2_bio_C_kg_kWH	📟 kg	lognorm	🗟 Biomass Boiler	(2; 1;	CO2 output from Biomass boiler
© CO2_from_coal	PI Data	CO2_coal_C_kg_kWh	📟 kg	lognorm	🗟 PFBC x3	(2; 1;	CO2 output from PFBC x3 coal
© CO2_from_MgCO3	PI Data	CO2_coal_MgCO3_kg	📟 kg	lognorm	🗟 PFBC x3	(2; 1;	CO2 output from PFBC x3 Limestone
CO2_from_sulfur	PI Data	CO2_coal_S_kg_kWh	📟 kg	lognorm	🗟 PFBC x3	(2; 1;	CO2 output from PFBC x3 Limestone CaCO3
🅸 Lime	PI Data	m_lime_kg	📟 kg	lognorm	🗟 Lime Production	(2; 1;	Transported lime input
Monoethanolamine	PI Data	m_amine_kg	📟 kg	lognorm	J MEA Production	(2; 1;	Transported MEA input
🅸 PAC	PI Data	m_PAC_kg	📟 kg	lognorm	PAC Production	(2; 1;	Transported PAC input
Plant Construction	PI Data	1.00000	📟 Item(s)	lognorm	🔊 Plant Construction	(2; 1;	Impacts of plant construction per kWh outpu

low	Category	Amount	Unit	Uncertainty	Provider	Data c	Description
Electricity	NETL flows/Energy	1.00000	📟 kWh	lognorm		(2;	1 kWh electricity output
© CO2_from_air	PI Data	released_co2_from_air	📟 kg	lognorm		(2; 1	CO2 released originally from air
arbon_dioxide_seq		sequestered_co2	📟 kg	lognorm	🗗 Field_C	(2; 1	
Carbon dioxide	/Emission to air/uns	released_co2_from_liber	📟 kg	lognorm			