

3-5 MARCH 2025 Houston, Texas

Machine Learning Applications for CCS Project Acceleration

Jimin D. Zhou¹, Anirban Chandra², Yunan Li¹, Yulman Perez-Claro¹, Liping Jia³, Deniz Dindoruk³, Anthony R. Kovscek¹

¹ Department of Energy Science & Engineering, Stanford University
² Shell Information Technology International Inc.
³ Shell International Exploration & Production Inc.

Outline

- Introduction
- Methodology
- Results
- Conclusions & Future Work

Introduction: Background

- Atlas is a cost-competitive, open-access carbon transport and storage hub in Alberta, Canada operated in a partnership between Shell Canada and ATCO EnPower
- Atlas is critical to ATCO's decarbonization and ESG targets
- The first phase of Atlas will provide permanent underground storage for CO₂ captured by the Polaris project roughly 22 km away at Shell's Scotford refinery
- The objective is to have the site operational by 2028
- Machine learning applications can be applied to accelerate the engineering design process, allowing for faster decision making

3-5 MARCH 2025 Houston, Texas

Introduction: Background

- A homogeneous sector model was developed to mimic an injection site at the Atlas hub
- CO₂ is injected for 30 years before the well is shut in
- Local grid refinement applied near the wellbore

a) Reservoir model and b) grid discretization

Name	Unit	Values
Permeability	md	10, 20, 50, 100, 200, 1000
Porosity		0.15
RelPerm		low, base, high
KvKh		0.07, 0.2
Thickness	m	30, 50
Dip angle	deg	0
Injection rate	Mtpa	0.1, 0.15, 0.4, 0.6, 1
BHP	Мра	28

3–5 MARCH 2025 Houston, Texas

Introduction: Background

- An Al-assisted workflow (pyCCUS) was developed to process ultra-complex subsurface modeling and numerical computations automatically (Li et al., 2024)
- The outputs from pyCCUS can then be applied for other data processing, visualization, and machine learning models

Image obtained from https://github.com/AndyStudio/pyCCUS-public

3–5 MARCH 2025 Houston, Texas

Introduction: Background

- pyCCUS generated hundreds of cases for the Atlas sector model
- In addition to analyzing gas saturation and pressure changes, <u>the</u> <u>injection rate is also a</u> <u>quantity of interest</u>

Next: Given a set of model input parameters, can we predict the CO₂ injection rate at a given time in the modeling process?

Methodology: Random Forest (RF) Models

- Supervised learning algorithm that can solve both regression and classification problems
- Random forest models can be advantageous due to:
 - ✓ No pre-assumptions on data distribution
 - ✓ Fast training process
 - ✓ Ability to handle non-linear relationships
 - ✓ Ensemble learning
- Disadvantages:
 - \times long prediction times for complicated models
 - × Cannot extrapolate outside the range of the training set

3–5 MARCH 2025 Houston, Texas

Methodology: RF Models for Subsurface Engineering

Prediction of original oil in place (OOIP) using RF models (Shafiei et al., 2022)

Image obtained from Shafiei et al (2022)

Predicted proppant filling index using RF and gated recurrent unit models (Hou et al., 2023)

Image obtained from Hou et al. (2023)

3-5 MARCH 2025 HOUSTON, TEXAS

Methodology: Comparison of Methods

Variable Features	Value
Permeability, mD	10, 20, 50, 100, 200
k _v /k _h	0.07, 0.2
Relative Permeability	Low, Base, High
Formation Thickness, m	30, 50
Targeted Injection Rate, MTPA	0.1, 0.15, 0.4, 0.6, 1.0

3–5 MARCH 2025 HOUSTON, TEXAS

Methodology: Modeling Workflow

3–5 MARCH 2025 HOUSTON, TEXAS

Results: Variable Sensitivity to Injection Rate

- Formation permeability plays a crucial role in achieving target injection rate
- Actual injection rate is calculated based on average reservoir CO₂ density
- The results agree with the distance-based sensitivity analysis performed by Li and Perez Claro (2023)

3–5 MARCH 2025 Houston, Texas

Results: Injection Rate Prediction at 5 years and 30 years

- Trained with 80% of the available data and tested on the remaining 20% (60 cases)
- Fast training and prediction times:
 - Training: 0.25 seconds
 - Testing: 0.42 seconds

3–5 MARCH 2025 Houston, Texas

Results: Scarcity of Training Data vs. Accuracy

- Increasing the amount of training data will improve model accuracy
- It is recommended that a <u>minimum of 20% of the total data</u> should be set aside for training data to yield accurate predictions

Results: Conclusions

- CO₂ injection rate is primarily driven by formation permeability and thickness
- A random forest model was created to predict early and late-stage injection rates for the Atlas sector model with great accuracy
- The model trains and predicts at faster rates compared to the CMG model (~2 minutes vs. several days)
- Future work will work on developing a preprocessing pipeline to help train the model with more samples and features (i.e. variable porosity, permeability, etc.)

3–5 MARCH 2025 Houston, Texas

Acknowledgments

- Shell Exploration & Production International
- J.Z. Xu
- K. Moran

3–5 MARCH 2025 Houston, Texas

Thank You!

References

- 1. ATCO. Accessed 2025. About Atlas Carbon Storage Hub. URL: https://www.atco.com/en-ca/about-us/projects/atlas-carbon-storage-hub.html
- 2. Hou, L., Elsworth, D., Zhang, F., Wang, Z., Zhang, J. 2023. Evaluation of proppant injection based on a data-driven approach integrating numerical and ensemble learning models. *Energy* **264**(2023): 126122.
- 3. Li, Y., Perez Claro, Y., Zhou, J. Chandra, A., Jia, L., Dindoruk, D., Kovscek, A.R. 2024. Evaluation Metrics for the Atlas CCS Project Using an Al Assisted Workflow. Presented at the 17th International Conference on Greenhouse Gas Control Technologies, GHGT-17, Calgary, Canada.
- 4. Shafiei, A., Tatar, A., Rayhani, M., Kairat, M., Askarova, I. 2022. Artificial neural network, support vector machine, decision tree, random forest, and committee machine intelligent system help to improve performance prediction of low salinity water injection in carbonate oil reservoirs. *Journal of Petroleum Science and Engineering.* **219**(2022): 111046.
- 5. Tyralis, H., Papacharalampous, G. 2017. Variable Selection in Time Series Forecasting Using Random Forests. *Algorithms* **10**(4): 114.