

Dynamics of CO₂-Brine Mass Transfer in Naturally Fractured Reservoirs (NFRs): Implications for Storage Capacity and Predictive Modeling

Hai Huang, Tetra Tech, Lafayette, CA
Joanna Walker*, WSP (*previously at Tetra Tech), Baton Rouge LA

March 5, 2025, Houston, TX

Outline

- Introduction & Objective
- Modeling Approach
- Injection phase
- Post-injection pahse
- Conclusions

Introduction & Objective

- Naturally fractured reservoirs (NFRs) are ubiquitous
 - √>50% conventional hydrocarbon resources in fractured carbonate reservoirs
- Large contrasts of permeability & entry pressure between fractures and matrix
- Challenges of CCS in NFRs:
 - ✓ Capillary barrier: CO₂ tends to be non-wetting
 - √CO₂ preferentially flow through fracture network
 - √Loss of porous matrix storage capacity
 - √High risk of CO₂ spill-off of anticline

March, R., Doster, F., & Geiger, S. (2018). Assessment of CO2 storage potential in naturally fractured reservoirs with dual-porosity models. Water Resources Research, 54, 1650–1668. https://doi.org/10.1002/2017WR0221

Introduction & Objective

- Multiple CO₂-brine mass exchange mechanisms:
 - ✓ Dominating exchanging mechanisms vary between injection and post-injection phases
- Dual-porosity (or dual-permeability) models for reservoir scale simulations:
 - √ key assumption mass exchange rate function
- This study provides mechanistical modeling of CO₂-brine mass exchange at the scale of matrix blocks

March, R., Doster, F., & Geiger, S. (2018). Assessment of CO2 storage potential in naturally fractured reservoirs with dual-porosity models. Water Resources Research, 54, 1650–1668. https://doi.org/10.1002/2017WR0221

Modeling Approach

1m x 1m porous block

- Idealized fracture network
 ✓ k=1x10⁵ mD (i.e., ~10s µm aperture)
- Matrix permeability:
 ✓ 0.001 100mD
- CO₂ "instantaneously" fill fractures
- No CO₂ mass in porous matrix initially
- STOMP code selected for modeling

Modeling Approach: Injection Phase

Model domain: 1m-thick vertical slice

- 1m x 1m porous block
- 1cm x 1cm grid resolution
- Brooks-Corey ksp functions:

	K(mD)	S _{w_r}	Entry Pressure head(m)
Fracture	1.0e5	0.05	0.02
matrix	0.001 0.01 1.0 10.0 100.0	0.15 0.15 0.15 0.15 0.15	20.0 2.0 0.2 0.2 0.2

In-situ P & T:

√30MPa

√70°C

· Initial condition:

$$\sqrt{S_{q}} = 0.95, S_{w} = 0.05$$

$$\sqrt{S_{q}} = 0.0, S_{w} = 1.0$$

BC: fixed CO₂ saturation in fractures:

✓ Mimicking continuous injection

Modeling Approach: Post-Injection Phase

Model domain: 1m-thick vertical slice

- 1m x 1m porous block
- 1cm x 1cm grid resolution
- Brooks-Corey ksp functions:

	K(mD)	S _{w_r}	Entry Pressure head(m)
Fracture	1.0e5	0.05	0.02
matrix	0.01 0.1 1.0 10.0	0.15 0.15 0.15 0.15	2.0 0.2 0.2 0.2
	100.0	0.15	0.2

In-situ P & T:

√30MPa

√70°C

· Initial condition:

$$\sqrt{S_{q}} = 0.95, S_{w} = 0.05$$

$$\sqrt{S_{q}} = 0.0, S_{w} = 1.0$$

· BC:

- ✓ Left & right no flow, lateral symmetry condition
- ✓ Top & bottom hydrostatic inflow/outflow

Simulation Results: Injection Phase (matrix k=1mD)

CO2 Gas Saturation vs. Time

Simulation Results: Injection Phase (matrix k=1mD)

- Highly nonlinear rate transfer function
- Viscous displacement is the dominating mass transfer
- Diffusion transport is minor
- No observed convective flow inside porous matrix block

Simulation Results: Injection Phase

Simulation Results: Post-Injection Phase (matrix k=1mD)

CO2 Gas Saturation vs. Time

Dissolved CO2 Mass Fraction vs. Time

Simulation Results: Post-Injection Phase (matrix k=1mD)

- CO₂ dissolution & diffusion dominating mass transfer
- Convective flow contributing to mass transfer
- No viscous displacement transfer for moderate to low permeability matrix rock

Simulation Results: Post-Injection Phase

Conclusive Remarks

- Viscous displacement dominates CO₂ mass transfer into matrix from fractures during injection phase
- Dissolution-diffusion and gravity drainage processes dominate fracture-matrix CO₂ mass transfer during postinjection phase
- Field applications of CCS in NFRs require the development of more robust fracture-matrix transfer rate functions for CO₂brine system
- Designing optimal CO₂ injection rate into NFRs should consider the time scales of reaching maximum storage capacity of rock matrix