Dynamics of CO₂-Brine Mass Transfer in Naturally Fractured Reservoirs (NFRs): Implications for Storage Capacity and Predictive Modeling Hai Huang, Tetra Tech, Lafayette, CA Joanna Walker*, WSP (*previously at Tetra Tech), Baton Rouge LA March 5, 2025, Houston, TX # Outline - Introduction & Objective - Modeling Approach - Injection phase - Post-injection pahse - Conclusions # Introduction & Objective - Naturally fractured reservoirs (NFRs) are ubiquitous - √>50% conventional hydrocarbon resources in fractured carbonate reservoirs - Large contrasts of permeability & entry pressure between fractures and matrix - Challenges of CCS in NFRs: - ✓ Capillary barrier: CO₂ tends to be non-wetting - √CO₂ preferentially flow through fracture network - √Loss of porous matrix storage capacity - √High risk of CO₂ spill-off of anticline March, R., Doster, F., & Geiger, S. (2018). Assessment of CO2 storage potential in naturally fractured reservoirs with dual-porosity models. Water Resources Research, 54, 1650–1668. https://doi.org/10.1002/2017WR0221 # Introduction & Objective - Multiple CO₂-brine mass exchange mechanisms: - ✓ Dominating exchanging mechanisms vary between injection and post-injection phases - Dual-porosity (or dual-permeability) models for reservoir scale simulations: - √ key assumption mass exchange rate function - This study provides mechanistical modeling of CO₂-brine mass exchange at the scale of matrix blocks March, R., Doster, F., & Geiger, S. (2018). Assessment of CO2 storage potential in naturally fractured reservoirs with dual-porosity models. Water Resources Research, 54, 1650–1668. https://doi.org/10.1002/2017WR0221 # **Modeling Approach** 1m x 1m porous block - Idealized fracture network ✓ k=1x10⁵ mD (i.e., ~10s µm aperture) - Matrix permeability: ✓ 0.001 100mD - CO₂ "instantaneously" fill fractures - No CO₂ mass in porous matrix initially - STOMP code selected for modeling # Modeling Approach: Injection Phase Model domain: 1m-thick vertical slice - 1m x 1m porous block - 1cm x 1cm grid resolution - Brooks-Corey ksp functions: | | K(mD) | S _{w_r} | Entry Pressure
head(m) | |----------|---------------------------------------|--------------------------------------|----------------------------------| | Fracture | 1.0e5 | 0.05 | 0.02 | | matrix | 0.001
0.01
1.0
10.0
100.0 | 0.15
0.15
0.15
0.15
0.15 | 20.0
2.0
0.2
0.2
0.2 | In-situ P & T: √30MPa √70°C · Initial condition: $$\sqrt{S_{q}} = 0.95, S_{w} = 0.05$$ $$\sqrt{S_{q}} = 0.0, S_{w} = 1.0$$ BC: fixed CO₂ saturation in fractures: ✓ Mimicking continuous injection # Modeling Approach: Post-Injection Phase Model domain: 1m-thick vertical slice - 1m x 1m porous block - 1cm x 1cm grid resolution - Brooks-Corey ksp functions: | | K(mD) | S _{w_r} | Entry Pressure
head(m) | |----------|----------------------------|------------------------------|---------------------------| | Fracture | 1.0e5 | 0.05 | 0.02 | | matrix | 0.01
0.1
1.0
10.0 | 0.15
0.15
0.15
0.15 | 2.0
0.2
0.2
0.2 | | | 100.0 | 0.15 | 0.2 | #### In-situ P & T: √30MPa √70°C ### · Initial condition: $$\sqrt{S_{q}} = 0.95, S_{w} = 0.05$$ $$\sqrt{S_{q}} = 0.0, S_{w} = 1.0$$ #### · BC: - ✓ Left & right no flow, lateral symmetry condition - ✓ Top & bottom hydrostatic inflow/outflow ## Simulation Results: Injection Phase (matrix k=1mD) #### **CO2 Gas Saturation vs. Time** ## Simulation Results: Injection Phase (matrix k=1mD) - Highly nonlinear rate transfer function - Viscous displacement is the dominating mass transfer - Diffusion transport is minor - No observed convective flow inside porous matrix block ## Simulation Results: Injection Phase ## Simulation Results: Post-Injection Phase (matrix k=1mD) #### **CO2 Gas Saturation vs. Time** #### **Dissolved CO2 Mass Fraction vs. Time** ## Simulation Results: Post-Injection Phase (matrix k=1mD) - CO₂ dissolution & diffusion dominating mass transfer - Convective flow contributing to mass transfer - No viscous displacement transfer for moderate to low permeability matrix rock ## Simulation Results: Post-Injection Phase ## **Conclusive Remarks** - Viscous displacement dominates CO₂ mass transfer into matrix from fractures during injection phase - Dissolution-diffusion and gravity drainage processes dominate fracture-matrix CO₂ mass transfer during postinjection phase - Field applications of CCS in NFRs require the development of more robust fracture-matrix transfer rate functions for CO₂brine system - Designing optimal CO₂ injection rate into NFRs should consider the time scales of reaching maximum storage capacity of rock matrix