

3-5 MARCH 2025 Houston, Texas

EVALUATING THE IMPACT OF STRESS-INDUCE CHANGES ON CAPROCK INTEGRITY IN THE SAN JUAN BASIN

Presenter:

*Nathaniel Nimo Yeboah

Dr. William Ampomah Dr. Dung Bui

Dr. Adewale Amosu

New Mexico Institute of Mining and Technology

3rd March,2025

3–5 MARCH 2025 HOUSTON, TEXAS

Acknowledgements

Funding for this project is provided by the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) under Award No. DE-FE0031890.

3-5 MARCH 2025 Houston, Texas

Presentation Outline

Introduction Site Description Project Objectives

Methodology

Conclusion and Recommendations

Introduction

- The caprock's geomechanical behavior affects the long-term integrity of storage reservoirs during CO₂ injection.
- Caprock stability depends on in-situ stress, pore pressure, rock strength, and mechanical failure from CO₂ injection.
- Increasing pore fluid pressure redistributes stress and causes geomechanical issues.

Fig.1: Illustrates CO2 injection and Caprock geomechanical response

3-5 MARCH 2025 HOUSTON, TEXAS

Research Objectives

- To develop a coupled hydro-mechanical model incorporating information from the San Juan Basin storage complex.
- Calibrate the hydrodynamic model with historical water injection data from 22 SWD wells.
- Calibrate the coupled model with 1D MEM from the stratigraphic well.
- Evaluating the impact of stress-induced changes on cap-rock longterm structural stability.

3-5 MARCH 2025 Houston, Texas

Methodology

Fig.2 : Framework of Integrated coupled modeling

3-5 MARCH 2025 Houston, Texas

Caprock

Reservoirs

Site Description

Fig.3: Location and Stratigraphic Section of San Juan Basin

3-5 MARCH 2025 Houston, Texas

Reservoir and Final Geomechanical grid

Fig.4: Main 3D Reservoir grid

Fig.5: Final geomechanical grid

Model Description and Setup

Table 1: Shows Simulation setup		Formation	0.0194 F/ft
Size	40x40 mile	temperature gradie	ent
Grid cells in (I,J,K) (ft)	143x144x37	Water salinity	34000 ppm
Number of grid cells	761904	Initial water saturation 100%	
Dimension of a grid cell(ft)	1500x1500		
Elevation(ft)	6223	CO2 Injection Setup	
Number of layers	30	Bottom hole	4680 psi(90% of fracture
Average thickness	139 ft	pressure	pressure)
Permeability of caprock	3.9e-6 – 2.8e-5 mD	Wellhead temperature	60F
Porosity of caprock	0.3 - 0.8%		
Pore pressure gradient	0.42 psi/ft	Composition of injection fluid	100%CO2
Formation fracture gradient	0.62 psi/ft	Injection rate	20 MMSCFD over 30 years

3-5 MARCH 2025 Houston, Texas

Results for History Match

Fig.8 : BHP and Water injection rate of history matched results

3-5 MARCH 2025 Houston, Texas

Results for CO2 Forecast

Fig.10 : Illustrates CO2 plume after 30years of CO2 injection

Fig.11 : Cross-sectional View of CO2 plume after 30years of CO2 injection

3-5 MARCH 2025 Houston, Texas

Results for CO2 Forecast

Fig.12 : Gas injection rate and gas injection cumulative

3-5 MARCH 2025 Houston, Texas

Results for CO2 Forecast

Fig.14 : Pressure evolution at different locations after 30years of CO2 injection

Fig.15 : Pressure front after 30years of CO2 injection

3-5 MARCH 2025 Houston, Texas

Results for CO2 Forecast

Fig.19 : Mohr-Coulomb at different locations after 30years of CO2 injection

3-5 MARCH 2025 Houston, Texas

Results for CO2 Forecast

Fig.16 : Effective stress at different locations after 30years of CO2 injection

3–5 MARCH 2025 Houston, Texas

Results for CO2 Forecast

Fig.17 : Strain at different locations after 30years of CO2 injection

3-5 MARCH 2025 Houston, Texas

Results for CO2 Forecast

Fig.18 : Uplift at different locations after 30years of CO2 injection

3-5 MARCH 2025 Houston, Texas

Results for Post CO2 Injection

Fig.20 : Illustrates CO2 plume after 30years of CO2 injection

Fig.21 : Cross-sectional View of CO2 plume after 30years of CO2 injection

3-5 MARCH 2025 Houston, Texas

Results for Post CO2 Injection

Fig.22 : Mohr-Coulomb at different locations after 50 years of observation

3–5 MARCH 2025 Houston, Texas

Conclusion

- Effective stress decreases due to pore pressure increase but the rate of reduction decreases moving away from the injection well.
- Strain recorded within and after the 30 years of injection is in micro-strain magnitude.
- There is permeability update within the caprock but the increase in permeability is very small and no change was seen moving away from the injection well.
- The analysis of the Mohr circle model shows a stable seal after 30 years of injection and 50 years of observation.
- Fifty years of monitoring the CO2 injection shows the seals is not compromised and the stress on the Caprock is reduced. This shows that the CO2 operation can be carried out without any geomechanically severe impact.

Thank you

3–5 MARCH 2025 Houston, Texas

3–5 MARCH 2025 Houston, Texas

References

- Karimnezhad, M., Jalalifar, H., & Kamari, M. (2014). Investigation of caprock integrity for CO2 sequestration in an oil reservoir using a numerical method. *Journal of Natural Gas Science and Engineering*, 21, 1127-1137.
- Shukla, R., Ranjith, P. G., Choi, S. K., & Haque, A. (2011). Study of caprock integrity in geosequestration of carbon dioxide. *International Journal of Geomechanics*, 11(4), 294-301.
- Liu, H., Hou, Z., Were, P., Gou, Y., & Sun, X. (2016). Numerical investigation of the formation displacement and caprock integrity in the Ordos Basin (China) during CO2 injection operation. *Journal of Petroleum Science and Engineering*, 147, 168-180.
- Zoback, M.D., 2010. Reservoir geomechanics. Cambridge university press.
- Bohloli, B., Skurtveit, E., Grande, L., Titlestad, G. O., Børresen, M., Johnsen, Ø., & Braathen, A. (2014). Evaluation of
 reservoir and cap-rock integrity for the Longyearbyen CO2 storage pilot based on laboratory experiments and injection
 tests.
- Han, Y., Liu, H. H., Alruwaili, K., & AlTammar, M. J. (2024, February). Wellbore and caprock integrity during CO2 injection in saline aquifer. In *International Petroleum Technology Conference* (p. D021S053R006). IPTC.
- Vilarrasa, V., & Makhnenko, R. Y. (2017). Caprock integrity and induced seismicity from laboratory and numerical experiments. *Energy Procedia*, 125, 494-503.
- Busch, A., Amann, A., Bertier, P., Waschbusch, M., & Krooss, B. M. (2010, November). The significance of caprock sealing integrity for CO2 storage. In SPE International Conference on CO2 Capture, Storage, and Utilization (pp. SPE-139588). SPE.

3–5 MARCH 2025 Houston, Texas

Mohr–Coulomb diagram for matrix failure criteria

Fig.19 : Mohr-Coulomb at different locations after 30years of CO2 injection

3–5 MARCH 2025 Houston, Texas

Post Injection analysis on the caprock

Fig.22 : Mohr-Coulomb at different locations after 30years of CO2 injection

3-5 MARCH 2025 Houston, Texas

Mohr-Coulomb diagram for matrix failure criteria on the reservoir

Fig.23 : Mohr-Coulomb at different locations after 30years of CO2 injection(Reservoir)

3–5 MARCH 2025 Houston, Texas

Post Injection analysis on the Reservoir

Fig.24 : Mohr-Coulomb at different locations after 50years of observation

3-5 MARCH 2025 Houston, Texas

Permeability evolution over time through 5 miles distance.

