

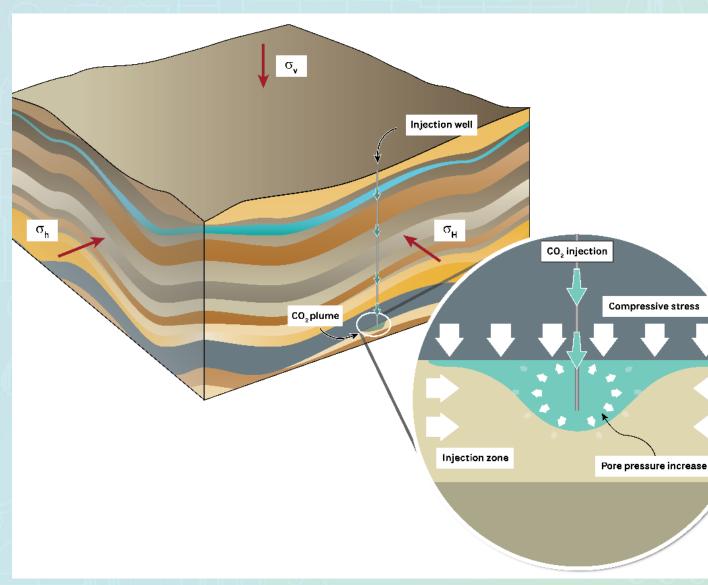
NRAP Recommended **Practices for Least Principal** Stress ("Fracture Pressure") Characterization at Geologic Carbon Storage Sites

Jeff Burghardt¹; Jean Desroches², Delphine Appriou¹, Wenjing Wang¹, Kayla A. Kroll³

1 Pacific Northwest National Laboratory, Energy and Environment Directorate, 902 Battelle Blvd, Richland, WA 99354

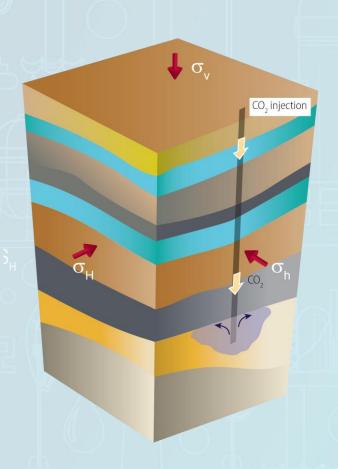
2 Rocks Expert SARL, 244 Chemin de Bertine, 04300 Saint-Maime, France

3 Lawrence Livermore National Laboratory, Earth and Energy Division, 7000 East Avenue, Livermore, CA 94550-9234

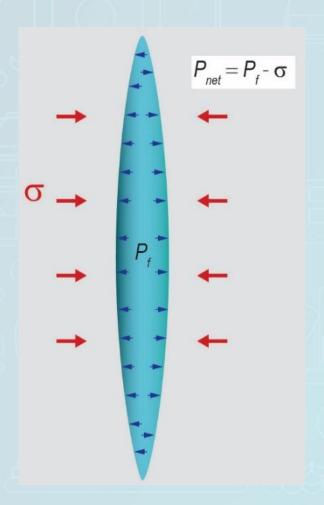


Outline

- Background
 - In-situ stress
 - Stress measurement approaches
- Recommended practices
 - Operational planning
 - Pre-test logging and zone selection
 - Fracturing procedure
 - Interpretation

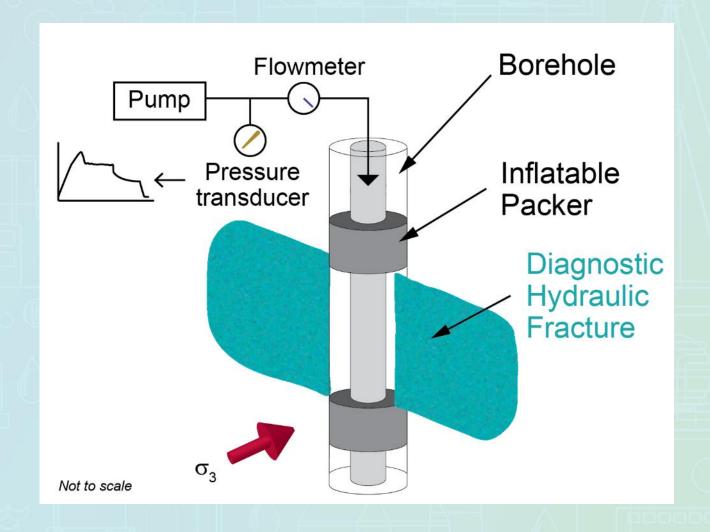


- Subsurface operations involving fluid injection, such as CO₂ injection, can alter in situ stress conditions by affecting pore pressure, which could potentially lead to:
 - Unintentional propagation of hydraulic fractures through the caprock
 - Fault or fracture slippage leading to possible leakage
 - Seismic events generated by seismic fault activation


In-Situ Stresses

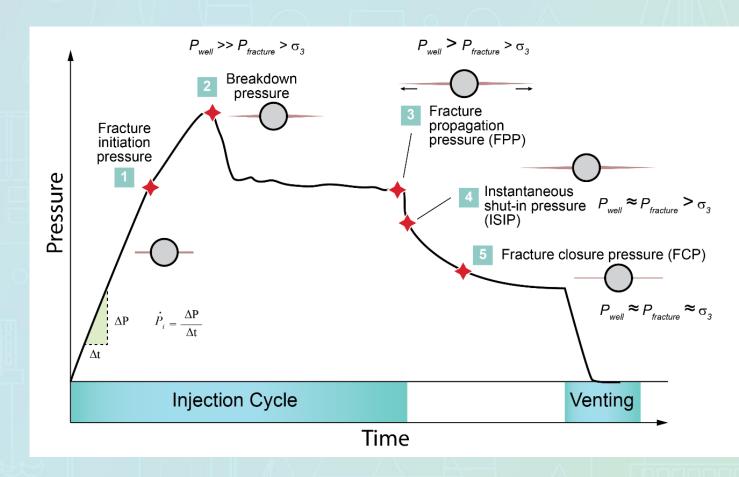
- Stress defined by three principal stresses and their orientations
- At depth, generally oriented vertical/horizontal

In-Situ Stresses


Factors controlling initiation and propagation of tensile fractures:

- Magnitude of the *least* compressive principal stress
- Fluid pressure
- Material strength

Stress Measurement Tests


- Hydraulic fractures are the most reliable method of measuring the least compressive stress magnitude at depth
- Can be performed in cased or open holes
- Can use downhole pump on wireline tools or surface pumping with drill pipe or coiled tubing
- Downhole pressure measurement critical

Stress Measurement Tests

- "Fracture pressure" is an ambiguous term
- Fracture closure pressure is the best estimate for the magnitude of the least compressive stress
- Fracture propagation pressure, ISIP, and breakdown pressures all over-estimate the stress magnitude
- Over-estimating stress magnitude increases risk of unintentional hydraulic fracturing during CCS operations

Step 1: Operational Planning

- Select equipment and deployment strategy
 - · Pressure, capacity, integration with other testing
- Preliminary choice of testing parameters
 - Use analytical or numerical model to select fluid type, rate, and volumes
- Preliminary plan for number and locations of tests

Step 2: Pre-test Logging and Final Zone Selection

- Recommended logs:
 - Image log, multi-arm caliper, triple-combo, and ideally di-pole sonic
- Select final zones based on:
 - Hole conditions (informed by image and caliper)
 - Heterogeneity (image, density, neutron, GR, sonic)
 - Avoid existing fractures where possible
- Balance sampling heterogeneity and providing redundancy

Step 3: Fracture Initiation, Propagation, and Closure

- Propagate fracture to desired size in 3-5 cycles
- Inflate packers and perform slug test
- Propagate fracture, measure ISIP
- Pump-in/flowback and/or pump-in/shut-in tests to determine closure pressure
- Slam-back (rapid flowback) / rebound to verify existence of fracture

Step 4: Post-test Logging

- If test performed in open hole, recommend post-test image logging
- Identify existence and orientation of fractures

Step 5: Interpretation and Reporting

- Reconciliation plot with:
 - Fracture opening/re-opening pressure
 - · ISIP
 - Fracture closure pressure
 - Rebound pressure from slam-back/rapid flowback test
- Look for consistency and convergence to confirm
 - Formation of fracture
 - Fracture has escaped stress concentration near wellbore

Conclusions

- Injection pressures should be below the magnitude of the least compressive principal stress
- Fracture closure pressure is the best estimate for the least compressive principal stress
- Shut-in decline or pump-in/flowback tests are recommended to measure the fracture closure pressure
- Fracture propagation pressures or instantaneous shut-in pressures (ISIP) are upper-bound estimates
- Upper-bound estimates may allow injection pressures to exceed minimum principal stress even with 10% safety factor