

Study of Near-Wellbore Injectivity of CO₂ Sequestration in Saline Aquifers

Authors: A. A. Alarawi, A. Al Moajil, A. Alghamdi, and J. Rubeh

EXPEC Advanced Research Center, Saudi Aramco

Presenter: Yanhui Han

Houston Research Center, Aramco Americas

March 4, 2025

Outline

Saudi Aramco Initiative Toward Zero CO₂ Emissions

Carbon Capture and Storage (CCS) in Oil & Gas Industry

CO₂-brine-rock Interactions Mechanism

Salt Precipitation Characterization Results

Energy

Sustainability

Zero CO₂ Emissions

Saudi Aramco Initiative Toward Zero CO₂ Emissions

International Energy Agency | Net Zero Roadmap.2023

Corporate Levers To Achieve Reductions In GHG Emissions

GHG Reductions Targeted by 2035

Net Zero Ambition

In October 2021, Aramco announced its ambition to achieve net-zero Scope 1 & Scope 2 GHG emissions across its wholly-owned operated assets by 2050

Aramco Sustainability Report, 2023.

Corporate Levers

3-5 MARCH 2025

Energy Efficiency

aramco

Renewables

Methane & Flaring

Operating Model

Saudi Aramco Sustainability Report. 2023.

5

CO2 Sequestration in Saline Aquifer

Co₂-brine-rock Interactions

- $CO_2(g) + H_2O \leftrightarrow H_2CO_3(aq)$ (1)
- $H_2CO_3 (aq) \leftrightarrow H^+ (aq) + HCO_3^- (aq)$ (2)
- $HCO_{3}^{-}(aq) \leftrightarrow H^{+}(aq) + CO_{3}^{2-}(aq)$ (3)

Schematic of a geological CO₂ storage site with zones formed around the injection well

Research Objective

To investigate the salt precipitation impact on CO_2 injectivity during sequestration in the carbonate saline aquifers

n.

3-5 MARCH 2025 HOUSTON, TEXAS OLOMOO

Experimental Study

HOUSTON, TEXAS OLOMOCO

Experimental Procedure

Pre-test

- Measure core properties, such as weight, porosity, permeability, microstructures
- Saturate cores (1.5 x 3.0 inch) with brine of pH 6.5 for 2 months
- Chemical composition of brine can be found in the paper

Test

- Mimic the actual CO2 sequestration process in near-well region in the saline aquifer
- Inject 10 pore volumes (PV) of dry CO2 or N2 at rate of 1 cm3/min
- The back pressure is 1100 psi
- Monitor the injection pressure

Post-test

- Dry cores at 100 C for 24 hours to remove absorbed water
- Measure the remaining salt, porosity, permeability, micro structures

1-5 MARCH 2025 HOUSTON, TEXAS OCOMCO

Core Flooding Experiments

Core Flooding Parameter	Value		
Temperature	50 °C		
Confining stress	2500 psi		
Back pressure	1100 psi		
Injection rate	1 cm ³ /min		

Core #	Porosity	Permeability	Flooding gas	
1	14.4	2.07	N ₂	
2	15.5	3.31	CO ₂	
3	18.3	31.7	CO ₂	
4	17.7	23.6	N ₂	

Diagram of core flooding setup

Experimental Results

 ΔP vs. PV drop profile for CO₂ injection into brine-saturated core #3

3-5 MARCH 2025 Houston, Texas

Experimental Results

- Porosity (%) before exposure to CO2/N2
- Porsity loss difference
- Permeability (Md) after ExposureCO2/N2
- Weight (gm) Exposure to CO2/N2

- Porosity (%) after exposure to CO2/N2
- Permeability (Md) before Exposure to CO2/N2
- Permeability loss difference
- Weight (gm) after Exposure to CO2/N2 & drying

A comparison diagram of weight, microstructured values, and loss/increase difference percentage of all core plugs

before and after introducing N_2 and CO_2

3–5 MARCH 2025 Houston, Texas

Experimental Results

Core #	Flooding gas	Initial Porosity	Post-test Porosity	Initial Permeability (mD)	Post-test Permeability (mD)	Salt precipitated (gm)
1	N ₂	14.4	12.3	2.07	2.03	2.38
2	CO ₂	15.5	13.3	3.31	2.77	2.75
3	CO ₂	18.3	15.3	31.7	22.5	3.68
4	N ₂	17.7	15.0	23.6	21.7	2.79

Lab observations: (1) Both CO2 and N2 cause dry-out (salt precipitation) (2) CO2 seems to be more severe

3-5 MARCH 2025 HOUSTON, TEXAS

14

Results

CT Scan diagrams show the relation between the x-ray CT number (Hounsfield units) and the core plugs 1-4.

Conclusion

- Saudi Aramco has committed to net-zero emission by 20250; CCUS is an important program for achieving this target; this project is part of CCUS program.
- Core flooding test shows that both CO₂ and N₂ will cause dry-out (salt precipitation) in carbonates cores.
- Salt precipitation increases the bulk density of cores and modify the microstructural characteristics of cores.
- In comparison, CO_2 flooding results in a more significant permeability reduction than N_2
- The rock dissolution and crystals of salt (NaCl) scale on the pores of cores can be observed in the lab test.
- Salt precipitation changes the microstructural characteristics of the cores, introducing formation damage near wellbore, subsequently imposing negative impact on the sequestration process of CO₂ in the saline reservoirs. 15

3–5 MARCH 2025 Houston, Texas

Thank you